首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous concrete beams are structural elements commonly used in structures that might be exposed to extreme weather conditions and the application of deicing salts, such as bridge overpasses and parking garages. In such structures, reinforcing continuous concrete beams with the noncorrodible fiber-reinforced polymer (FRP) bars is beneficial to avoid steel corrosion. However, the linear-elastic behavior of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. A total of seven full-scale continuous concrete beams were tested to failure. Six beams were reinforced with glass fiber-reinforced polymer (GFRP) longitudinal bars, whereas one was reinforced with steel as control. The specimens have rectangular cross section of 200×300??mm and are continuous over two spans of 2,800?mm each. Both steel and GFRP stirrups were used as transverse reinforcement. The material, spacing, and amount of transverse reinforcement were the primary investigated parameters in this study. In addition, the experimental results were compared with the code equations to calculate the ultimate capacity. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible and is improved by increasing the amount of transverse reinforcement. Also, beams reinforced with GFRP stirrups illustrated similar performance compared with their steel-reinforced counterparts.  相似文献   

2.
The results of testing two simply and three continuously supported concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars are presented. The amount of GFRP reinforcement was the main parameter investigated. Over and under GFRP reinforcements were applied for the simply supported concrete beams. Three different GFRP reinforcement combinations of over and under reinforcement ratios were used for the top and bottom layers of the continuous concrete beams tested. A concrete continuous beam reinforced with steel bars was also tested for comparison purposes. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported GFRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested.  相似文献   

3.
This paper presents the experimental results of the first phase of a study undertaken at the American University of Beirut to examine the effectiveness of fiber reinforced polymer (FRP) wraps to confine steel reinforcement in a tension lap splice region anchored in high-strength reinforced-concrete beams. Seven beam specimens were constructed. The specimens were reinforced on the tension side with three deformed bars spliced at midspan. The splice region was devoid of any transverse reinforcement to allow a full examination of the FRP wrap contribution. Glass fiber reinforced polymer (GFRP) sheets were used. The main test variables were the GFRP configuration in the splice region (one strip, two strips, or a continuous strip), and the number of layers of the GFRP wraps placed around the splice region (one layer or two layers). All GFRP wraps were U-shaped. Except for the epoxy adhesive, no other anchorage mechanism or bonding procedure was applied for the GFRP wraps on the concrete beam. Following the application of the GFRP wraps, the beams were tested in positive bending. The test results demonstrated that GFRP wraps were effective in enhancing the bond strength and ductility of failure mode of the tension lap splices, especially when continuous strips were applied over the splice region.  相似文献   

4.
Reinforcing concrete with a combination of steel and glass fiber-reinforced polymer (GFRP) bars promises favorable strength, serviceability, and durability. To verify its promise and to support design of concrete structures with this hybrid type of reinforcement, we have experimentally and theoretically investigated the load-deflection behavior of concrete beams reinforced with hybrid GFRP and steel bars. Eight beams, including two control beams reinforced with only steel or only GFRP bars, were tested. The amount of reinforcement and the ratio of GFRP to steel were the main parameters investigated. Hybrid GFRP/steel-reinforced concrete beams with normal effective reinforcement ratios exhibited good ductility, serviceability, and load carrying capacity. Comparisons between the experimental results and the predictions from theoretical analysis showed that the models we adopted could adequately predict the load carrying capacity, deflection, and crack width of hybrid GFRP/steel-reinforced concrete beams.  相似文献   

5.
Flexural behavior and serviceability performance of 24 full-scale concrete beams reinforced with carbon-, glass-, and aramid-fiber-reinforced-polymer (FRP) bars are investigated. The beams were 3,300?mm long with a rectangular cross section of 200?mm in width and 300?mm in depth. Sixteen beams were reinforced with carbon-FRP bars, four beams were reinforced with glass-FRP bars, two beams were reinforced with aramid-FRP bars, and two were reinforced with steel, serving as control specimens. Two types of FRP bars with different surface textures were considered: sand-coated bars and ribbed-deformed bars. The beams were tested to failure in four-point bending over a clear span of 2,750?mm. The test results are reported in terms of deflection, crack-width, strains in concrete and reinforcement, flexural capacity, and mode of failure. The experimental results were compared to the available design codes.  相似文献   

6.
The behaviors of simply and continuously supported beams reinforced with fiber reinforced polymer (FRP) materials are presented in this paper. The experimental testing program included seven simple rectangular beams and seven continuous T-section beams. Reinforcing bars and stirrups were made of steel, carbon, or glass fiber reinforced polymer (GFRP). It was concluded that the use of GFRP stirrups increased the shear deformation, and as a result deflection increased. Also, GFRP stirrups changed the failure mode from flexural to shear or flexural-shear, depending on the type of reinforcement bars (FRP or steel). Furthermore, the use of FRP reinforcement in continuous beams increased deformation. This increase remained small and acceptable at the service load level, but significantly increased near failure. While different FRP reinforcement arrangements were found to have the same load capacity as steel reinforcements in conventional beams, failure modes and ductility differed. Failure mode was governed by both the type of reinforcing bars and the type of stirrups. Additionally, the dowel effect influences the load carrying capacity of FRP reinforced continuous beams. A method for evaluating the ductility is presented. The ratio of absorbed energy at failure to the total energy, “energy ratio,” was used as a measure of ductility. Based on this definition, a classification of ductile, semiductile, and brittle behavior is suggested. The theoretical results obtained using the suggested method were substantiated experimentally. The continuous beams experienced higher “energy ratios” than did simple beams.  相似文献   

7.
Bond tests were conducted on concrete beams strengthened with near-surface-mounted (NSM) nonprestressed and prestressed carbon fiber-reinforced polymer (CFRP) rods under static loading. In the NSM technique, the CFRP rods are placed inside precut grooves and bonded to the concrete with epoxy adhesive. Six concrete beams were tested. The test variables included presence of internal tension steel reinforcement (unreinforced and reinforced), use of NSM CFRP strengthening (nonprestressed and prestressed), and type of CFRP rod (spirally wound and sand blasted). The beams were tested statically in four-point bending. Based on the test results, the transfer length for the prestressed CFRP rod in epoxied groove was 150 and 210 mm for the sand blasted and spirally wound rods, respectively. The main failure mode was debonding between the CFRP rod and the epoxy that starts at sections close to the midspan then, as the load increases, it propagates toward the supports. At failure, the beams strengthened with a given rod type showed the same CFRP strain at sections close to the support (29% of ultimate strain for spirally wound bars and 39% of ultimate strain for sand blasted bars). A cracked section analysis was carried out and compared well with the measured results.  相似文献   

8.
The development/splice strength and the pullout local bond stress-slip response of glass fiber-reinforced polymer (GFRP) bars in tension were experimentally investigated using beam specimens and pullout specimens, respectively. Two types of 12-mm (0.47-in.)-diameter GFRP bars were evaluated, namely, thread wrapped and ribbed. The test parameters included the concrete cover, the splice length, and the area of steel confinement for the beam specimens, and the concrete compressive strength for the pullout specimens. Companion steel reinforced beams were also tested for comparison. All beam specimens reinforced with thread-wrapped GFRP bars experienced pullout mode of bond failure, while all specimens reinforced with ribbed GFRP bars or steel bars experienced splitting mode of bond failure. It was found that the bond strength of FRP bars is largely dependent on the surface conditions of the bars. The pullout local bond stress-slip response of ribbed GFRP bars is intrinsically similar to that of steel bars reported in the literature. The bond strength of both types of GFRP bars investigated was about two to three times lower than that of steel bars. Predictions of the development/splice strength of GFRP bars in accordance with the ACI Committee 440 guidelines were unconservative in comparison with the test data. Also, in contradiction with the current ACI 440 report, the use of transverse confining reinforcement increased the bond strength by a sizable 15–30%.  相似文献   

9.
The objective of the presented study is to examine the effects of glass fiber reinforced polymer (GFRP) composite rehabilitation systems on the fatigue performance of reinforced concrete beams. Experiments were conducted on beams with and without GFRP composite sheets on their tensile surfaces. The specimens were 152 × 152 × 1,321 mm reinforced concrete beams with enough transverse reinforcement to avoid shear failure. The results of this study indicate that the fatigue life of reinforced concrete beams with the given geometry, subjected to the same cycling load, can be significantly extended through the use of externally bonded GFRP composite sheets. An interesting finding is that, although the fiber strengthening system increases the fatigue life of the beams, the failure mechanism, fatigue of the steel reinforcement, remains the same in both strengthened and nonstrengthened beams. Thus, it is possible to predict the fatigue life of a cyclically loaded beam using existing fatigue models.  相似文献   

10.
This study examines the effects of one-dimensional fiber-reinforced polymer (FRP) composite rehabilitation systems on the flexural fatigue performance of reinforced concrete bridge girders. Eight 508?mm deep and 5.6?m long reinforced concrete T-beams, with and without bonded FRP reinforcement on their tensile surfaces, were tested with a concentrated load at midspan under constant amplitude cyclic loading. The objective of this investigation is to establish the effect that these repair systems have on the fatigue behavior and remaining life of the girders. Results indicate that the fatigue behavior of such retrofit beams is controlled by the fatigue behavior of the reinforcing steel. The fatigue life of a reinforced concrete beam can be increased by the application of an FRP retrofit, which relieves some of the stress carried by the steel. The observed increase in fatigue life, however, is limited by the quality of the bond between the carbon FRP and concrete substrate. Debonding, initiating at midspan and progressing to a support, is common and is driven partially by the crack distribution and shear deformations of the beam.  相似文献   

11.
Increasing interest in the use of fiber-reinforced polymer (FRP) reinforcement for reinforced concrete structures has made it clear that insufficient information about the shear performance of such members is currently available to practicing engineers. This paper summarizes the results of 11 large shear tests of reinforced concrete beams with glass FRP (GFRP) longitudinal reinforcement and with or without GFRP stirrups. Test variables were the member depth, the member flexural reinforcement ratio, and the amount of shear reinforcement provided. Results showed that the equations of the Canadian CSA shear provisions provide conservative estimates of the shear strength of FRP-reinforced members. Recommendations are given along with a worked example on how to apply these provisions including to members with FRP stirrups. It was found that members with multiple layers of longitudinal bars appear to perform better than those with a single layer of longitudinal reinforcing bars. Overall, it was concluded that the fundamental shear behavior of FRP-reinforced beams is similar to that of steel-reinforced beams despite the brittle nature of the reinforcement.  相似文献   

12.
Realistic Bond Strength of FRP Rebars in NSC from Beam Specimens   总被引:2,自引:0,他引:2  
The bond strength of reinforcing bars in concrete is a prerequisite for the evaluation of the development length in reinforced concrete structures. This study concerns these phenomena for fiber reinforced polymer (FRP) rebars in normal strength concrete (NSC). Three different types of rebars were tested using the beam specimen: Carbon, glass, and steel. This involved a total of 26 beam specimens containing 10, 16, and 19?mm rebars. The test embedment lengths were 10, 15, and 20 times the rebar diameter (db). For each rebar tested, the results concern load deflection curves, bond stress-slip responses, and the mode of failure. The results showed that the bond strength of a FRP rebar is, generally, lower than that of steel rebar. Based on this and previous research, proposals for the average bond strength and for the development length of straight FRP rebars under tension in NSC are made.  相似文献   

13.
Experimental observations were made for the effectiveness of fiber sheet strips (FSSs) as internal stirrups in comparison with fiber-reinforced polymer (FRP) rod stirrups and steel stirrups. A total number of 10 concrete beams were tested under three-point loading. Each beam measured 1,400 mm long, 150 mm wide, and 250 mm deep. Their shear span-depth ratios were 2.5. The beams were composed of different shear reinforcements: one without stirrups, two with steel stirrups, one with carbon FRP rod stirrups, and the rest with different types of FSS stirrups. The main variables include stirrup types, strengthening of bent portions of FSS stirrups, impregnation, and shear reinforcement ratio for FSS stirrups. Test results indicated that concrete beams reinforced with FSS stirrups had enhanced shear strength over the beam without shear reinforcements. Moreover, the FSS stirrup-reinforced beams could maintain comparable shear behavior to that of the concrete beam reinforced with steel stirrups in overall load-deflection relationships, shear strengths, crack patterns, and crack widths at maximum load.  相似文献   

14.
This paper presents the results of experimental and theoretical investigations that study the flexural behavior of reinforced concrete-filled fiber-reinforced polymer (FRP) tubes (RCFFTs) beams. The experimental program consists of 10 circular beams [6 RCFFT and 4 control reinforced concrete (RC) beams] with a total length of 2,000?mm, tested under four-point bending load. The experimental results were used to review and verify the applicability of various North American code provisions and some available equations in the literature to predict deflection of RCFFT beams. The measured deflections and the experimental values of the effective moment of inertia were analyzed and compared with those predicted using available models. The results of the analysis indicated that the behavior of steel and FRP-RCFFT beams under the flexural load was significantly different than that of steel and FRP-RC members. This is attributed to the confining effect of the FRP tubes and their axial contribution. This confining behavior in turn enhanced the overall flexural behavior and improved the tension stiffening of RCFFT beams. For that, the predicted tension stiffening of steel and FRP-RCFFT beams using the conventional equations (steel or FRP-RC member) underestimates the flexural response; therefore, the predicted deflections are overestimated. Based on the analysis of the test results, the Branson’s equation for the effective moment of inertia of RC structures is modified, and new equations are developed to accurately predict the deflection of concrete-filled FRP tube (CFFT) beams reinforced with steel or FRP bars.  相似文献   

15.
This research studies the interaction of concrete, steel stirrups, and external fiber reinforced polymer (FRP) sheets in carrying shear loads in reinforced concrete beams. A total of eight tests were conducted on four laboratory-controlled concrete T-beams. The beams were subjected to a four-point loading. Each end of each beam was tested separately. Three types of FRP, uniaxial glass fiber, uniaxial carbon fiber, and triaxial glass fiber, were applied externally to strengthen the web of the T-beams, while some ends were left without FRP. The test results show that FRP reinforcement increases the maximum shear strengths between 15.4 and 42.2% over beams with no FRP. The magnitude of the increased shear capacity is dependent not only on the type of FRP but also on the amount of internal shear reinforcement. The triaxial glass fiber reinforced beam exhibited more ductile failure than the other FRP reinforced beams. This paper also presents a test model that is based on a rational mechanism and can predict the experimental results with excellent accuracy.  相似文献   

16.
This paper presents the results of an experimental and analytical study of the fatigue performance of corroded reinforced concrete (RC) beams repaired with fiber-reinforced polymer (FRP) sheets. Ten RC beam specimens (152×254×3,200?mm) were constructed. One specimen was neither strengthened nor corroded to serve as a reference; three specimens were corroded and not repaired; another three specimens were corroded and repaired with U-shaped glass FRP sheets that wrapped the cross section of the specimen; and the remaining three specimens were corroded and repaired with U-shaped glass FRP sheets for wrapping and carbon-fiber-reinforced polymer (CFRP) sheets for flexural strengthening. The FRP sheets were applied after the main reinforcing bars were corroded to an average mass loss of 5.5%. Following FRP repair, some specimens were tested immediately to failure, while the other repaired specimens were subjected to further corrosion before being tested to failure to investigate their postrepair (long-term) performance. Reinforcement steel pitting due to corrosion reduced the fatigue life significantly. The FRP wrapping had no significant effect on the fatigue performance, while using CFRP sheets for flexural strengthening enhanced the fatigue performance significantly. The fatigue results were compared to smooth specimen fatigue data to estimate an equivalent fatigue notch factor for the main reinforcing bars of the tested specimens.  相似文献   

17.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

18.
A composite system consisting of rectangular glass fiber reinforced polymer (GFRP) tubes connected to concrete slabs, using GFRP dowels has been developed. Seven beam specimens have been tested, including hollow and concrete-filled GFRP tubes with and without concrete slabs. Beam–slab specimens had two different shear span-to-depth ratios and one specimen had carbon–fiber reinforced polymer (CFRP)-laminated tension flange for enhanced flexural performance. Additionally, three double-shear GFRP tube-slab assemblies have been tested to assess the shear behavior of GFRP dowels, in both hollow and concrete-filled tubes. Three compression stubs of concrete-filled tubes were also tested by loading them parallel to the cross-section plane, to study GFRP web buckling behavior. The study showed that GFRP dowels performed well in shear and that composite action is quite feasible. While hollow tubes can act compositely with concrete slabs, more slip between the tube and slab would occur, compared to a concrete-filled tube-slab system. Simplified models are proposed to predict critical web buckling load of fiber reinforced polymer (FRP) tubes. Based on the models, a critical shear span-to-depth ratio of 4 was determined, below which web buckling may occur before flexural failure.  相似文献   

19.
Steel-reinforced polymer (SRP) composite materials are very attractive due to their low weight and high strength. The ease of installation which significantly reduces repair time and expense is another major advantage. One of the main disadvantages of SRP materials is that the matrices used for their fabrication are typically organic and thus they are susceptible to fire. In this study, a newly developed retrofit system is being used. It consists of high strength steel fibers impregnated in a fireproof inorganic matrix. The objective of this study is to examine the effects of this hybrid rehabilitation system on the fatigue performance of strengthened reinforced concrete beams. Sixteen 100?mm×150?mm×1200?mm reinforced concrete beams with enough transverse reinforcement to avoid shear failure were used in this study. Nine beams were strengthened with steel fiber sheets on their tension faces. The results from the present study indicate that the fatigue life of reinforced concrete beams, subjected to the same cycling load, can be significantly extended using externally bonded sheets. A rather important finding is that although the strengthening system increases the fatigue life of the beams, the failure mechanism remains the same in both strengthened and nonstrengthened beams. Thus, it is possible to predict the fatigue life of a cyclically loaded beam using existing fatigue models. Furthermore, no delamination failures were observed due to fatigue loading.  相似文献   

20.
Retrofitting concrete structures with fiber reinforced polymer (FRP) has today grown to be a widely used method throughout most parts of the world. The main reason for this is that it is possible to obtain a good strengthening effect with a relatively small work effort. It is also possible to carry out strengthening work without changing the appearance or dimensions of the structure. Nevertheless, when strengthening a structure with external FRP, it is often not possible to make full use of the FRP. The reason for this depends mainly on the fact that a strain distribution exists over the section due to dead load or other loads that cannot be removed during strengthening. This implies that steel yielding in the reinforcement may already be occurring in the service limit state or that compressive failure in the concrete is occurring. By prestressing, a higher utilization of the FRP material is made possible. It is extremely important to ensure that, if external prestressing is used, the force is properly transferred to the structure. Most of the research conducted with prestressing carbon fiber reinforced polymer (CFRP) for strengthening has been on surface bonded laminates. However, this paper presents research on prestressed CFRP quadratic rods bonded in sawed grooves in the concrete cover. This method has proven to be an advantageous means of bonding CFRP to concrete, and in comparison to surface bonded laminates, the shear and normal stress between the CFRP and the concrete are more efficiently transferred to the structure. In the presented test, no mechanical device has been used to maintain the prestress during testing, which means that the adhesive must transfer all shear stresses to the concrete. Fifteen beams with a length of 4?m have been tested. The tests show that the prestressed beams exhibited a higher first-crack load as well as a higher steel-yielding load as compared to nonprestressed strengthened beams. The ultimate load at failure was also higher, as compared to nonprestressed beams, but in relation not as large as for the cracking and yielding. In addition, the beams strengthened with prestressed FRP had a smaller midpoint deflection. All strengthened beams failed due to fiber rupture of the FRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号