首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redecking operations executed on urban bridges that experience large traffic volumes frequently require carefully orchestrated construction sequences carried out during times of nonpeak traffic. In such a construction environment, only bridge deck options that exhibit a high degree of modularity in conjunction with ease of installation are considered as viable options for a given redecking operation. As a further requirement, the deck installation must also be expected to perform essentially trouble free, with minimal maintenance, for very long periods of time in extremely harsh environments. The present research investigates the behavior of two new deck splice details for use in bridge applications involving precast concrete-filled steel grid deck panels. The research is primarily experimental in nature and is carried out using full-scale deck panel specimens. However, in an effort to better understand the experimental results, 3D finite-element models of the deck specimens are also constructed and studied. This paper summarizes the results from this experimental and analytical program of study.  相似文献   

2.
An innovative self-shoring staged construction method was developed to build the world’s longest reinforced composite concrete arch bridge across the Yangtze River at Wanxian, in Chongqing, China. The method uses a steel tube truss frame constructed by the conventional cantilever launching technique. This steel frame with concrete-filled tubes performs the dual role of arch falsework and arch main reinforcement for the final reinforced concrete arch bridge. An optimized schedule for concrete placement was proposed to control the stresses, deflections, and stability of the arch rib during construction. The time dependent effects of concrete, the nonlinear stress-strain relationship of steel and concrete, as well as the geometric nonlinearility were considered. Control information at various stages of construction can be provided using the model developed. A program was developed to conduct parametric studies for selection of the final construction scheme and to direct the construction progress by monitoring and comparing actual and predicted stress and deflection.  相似文献   

3.
The dynamic responses of steel deck, tension-tied, arch bridges subjected to earthquake excitations were investigated. The 620 ft (189 m) Birmingham Bridge, located in Pittsburgh, was selected as an analytical model for the study. The bridge has a single deck tension-tied arch span and is supported by two bridge piers, which in turn are supported by the pile foundations. Due to the complex configuration of the deck system, two analytical models were considered to represent the bridge deck system. Using the normal mode method, seismic responses were calculated for two bridge models and the results were compared with each other. Three orthogonal records of the El Centro 1940 earthquake were used as input for the seismic response analysis. The modal contributions were also checked in order to obtain a reasonable representation of the response and to minimize computational cost. Displacements and stresses at the panel points of the bridge are calculated and presented in graphical form.  相似文献   

4.
Experimental field load-test and finite-element analysis were carried out for the performance assessment of a precast-concrete, modular, three-sided, low-profile, buried, arch bridge system. Finite-element analysis incorporated soil modeling and soil–structure interaction at service and limit load levels. The analytical study simulates step-by-step incremental phases of construction and service loads. The finite-element model was calibrated based on the experimental field assessment, to provide a better correlation between the analytically predicted behavior and the actual response of the structure. The study validates the incorporation of various soil models and soil–structure interaction characteristics, to allow a more cost-effective bridge design.  相似文献   

5.
Recent earthquakes exposed the vulnerabilities of steel plate girder bridges when subjected to ground shaking. This paper discusses the behavior of steel plate girder bridges during recent earthquakes such as Petrolia, Northridge, and Kobe. The paper also discusses the recent experimental and analytical investigations that were conducted on steel plate girder bridges and their components. Results of these investigations showed the importance of shear connectors in distributing and transferring the lateral forces to the end and intermediate cross frames. Also, these investigations showed the potential of using end cross frames as ductile elements that can be used to dissipate the earthquake input energy. The paper also gives an update on specifications and guidelines for the seismic design of steel plate girder bridges in the United States.  相似文献   

6.
Autoparametric resonance is treated as the reason of arising excessive lateral vibrations in the steel arch bridge (the Solferino Bridge). To explain this phenomenon, a physical model (a double pendulum) is proposed. Its behavior, as a rule, depends on dynamic characteristics of a bridge rather than on its type. The response of a two degree-of-freedom system with quadratic nonlinearities in the presence of two-to-one autoparametric resonance is investigated. The perturbation method of multiple time scales is used to construct first-order nonlinear differential equations and to determine steady state solutions and their stability. Bifurcation analysis is performed to determine a critical (threshold) value in the external load (control) parameter. The autoparametric resonance becomes possible if an excited torsional mode is near a primary resonance and an external load parameter caused by pedestrians is equal or higher than its critical value. When the increasing load parameter passes through the critical value (because a quantity of pedestrians on the bridge is increased), a jump phenomenon (or fast growth) is observed for the lateral mode, the torsional mode is saturated and has much smaller amplitudes. Field tests were held to understand a phenomenon of an excessive lateral movement, and to enforce the Solferino Bridge. Theoretical results of the present paper are compared with those experimental measurements. Swaying of pedestrian bridges can be treated as a two-step process. The first step (achievement of parametric resonance), described in this paper, is the condition for the beginning of the second step—the process of possible synchronization of applied forces and the interactions between them and the lateral and torsional modes of vibration.  相似文献   

7.
This paper presents the development and experimental validation of a multizard bridge pier concept, i.e., a bridge pier system capable of providing an adequate level of protection against collapse under seismic and blast loading (but not acting simultaneously). A multicolumn pier-bent with concrete-filled steel tube (CFST) columns is the proposed concept, and the adequacy of this system is experimentally investigated under blast loading. This paper describes simplified blast analysis, multihazard design of bridge piers, and blast experimental program and results. Additionally, the results from the blast experiments are compared with the results from the simplified method of analysis considering an equivalent single degree of freedom system having an elastic-perfectly plastic behavior. It is found that prototype bridge CFST columns can be designed to provide both satisfactory seismic performance and adequate blast resistance. It is also shown that the CFST columns exhibited a ductile behavior under blast load in a series of tests at 1/4 scale. Maximum deformation of the columns could be calculated using simplified analysis considering a factor to account for the reduction of pressures on the circular column and determined from this experimental program.  相似文献   

8.
Bending behavior of steel pipes filled with ultralight mortar was studied by bending tests using a steel pipe, steel pipes filled with ultralight mortar, and steel pipes filled with light aggregate concrete and normal concrete. The steel pipe model filled with normal concrete had 1.8 times higher bending strength than the steel pipe model. The bending behavior of the steel pipe filled model with ultralight mortar was not improved when the compressive strength of the ultralight mortar was less than 1 MPa. However, ductility was much improved when the compressive strength was over 5 MPa, and the ultimate steel strain was more than double of the steel pipe model. The strains of steel and concrete in all the models were proportional to the distance from the neutral axis until the steel plate yielded. A simple analytical method was proposed to calculate the bending moments of the ultralight mortar filled steel pipes. The calculated values agreed very well with the test results.  相似文献   

9.
The objective of this paper is to present the results of an investigation of the dynamic and impact characteristics of half-through arch bridges with rough decks caused by vehicles moving across them. Seven arch bridges modeled as three-dimensional structures with overall span lengths ranging from 20?to?200?m (65.5?to?656.2?ft) are analyzed. The American Association of State Highway and Transportation Officials Specifications HS20-44 truck is the applied vehicle loading used in the analysis and is simulated as a three-dimensional, nonlinear vehicle model with 11 degrees of freedom. Truck components include the body, suspension, and tires. The bridge deck surface is assumed to have a “good” surface roughness and is simulated using a stochastic process (power spectral density function). The effect on impact factors of span length, rise-to-span ratio, and vehicle speed is discussed. The results of the analyses show that the impact factors of bending moment and axial force will not exceed 0.4 and 0.25, respectively. The proposed impact equations are simple and conservative and can be used in the design of half-through arch bridges.  相似文献   

10.
A series of studies on an experimental, full-scale curved steel bridge structure during erection are discussed. The work was part of the Federal Highway Administration’s curved steel bridge research project (CSBRP). The CSBRP is intended to improve the understanding of curved bridge behavior and to develop more rational design guidelines. The main purpose of the studies reported herein was to assess the capability of analytical tools for predicting response during erection. Nine erection studies, examining six different framing plans, are presented. The framing plans are not necessarily representative of curved bridge subassemblies as they would be erected in the field; however, they represent a variety of conditions that would test the robustness of analysis tools and assess the importance of erection sequence on initial stresses in a curved girder bridge. The simply supported, three I-girder system used for the tests is described and methods for reducing and examining the data are discussed. Comparisons between experimental and analytical results demonstrate that analysis tools can predict loads and deformations during construction. Comparison to the V-load method indicates that it predicts stresses in exterior girders well, but can underpredict them for interior girders.  相似文献   

11.
A fully nonlinear parametric model for wind-excited arch bridges is proposed to carry out the flutter analysis of Ponte della Musica under construction in Rome. Within the context of an exact kinematic formulation, all of the deformation modes are considered (extensional, shear, torsional, in-plane, and out-of-plane bending modes) both in the deck and supporting arches. The nonlinear equations of motion are obtained via a total Lagrangian formulation while linearly elastic constitutive equations are adopted for all structural members. The parametric nonlinear model is employed to investigate the bridge limit states appearing either as a divergence bifurcation (limit point obtained by path following the response under an increasing multiplier of the vertical accidental loads) or as a Hopf bifurcation of a suitable eigenvalue problem (where the bifurcation parameter is the wind speed). The eigenvalue problem ensues from the governing equations of motion linearized about the in-service prestressed bridge configuration under the dead loads and wind-induced forces. The latter are expressed in terms of the aeroelastic derivatives evaluated through wind-tunnel tests conducted on a sectional model of the bridge. The results of the aeroelastic analysis—flutter speed and critical flutter mode shape—show a high sensitivity of the flutter condition with respect to the level of prestress and the bridge structural damping.  相似文献   

12.
The live load structural capacity of open-spandrel arch bridge structures is difficult to quantify. In addition to live and dead loads, geometric nonlinear effects, temperature effects, and material behavior play key roles in the design and load rating of such a structure. This paper is a case study that illustrates the effect these variables have on load rating a two-span shallow concrete arch bridge. Presented are load ratings of the structure’s arch ribs using a three-dimensional finite-element model with American Association of State Highway and Transportation Officials publications. As a result of this study, a refined analysis is recommended for load rating arch bridges.  相似文献   

13.
Turkish bridge design standards were studied with a focus on the live load. Turkish design specifications were compared with American design specifications. Turkish bridge design specifications follow American Association of State Highway and Transportation Officials-Standard Specifications for Highway Bridges (AASHTO-SSHB), with the live load in Turkish standards given in tonnes, whereas in AASHTO-SSHB the live load is in tons. Turkish bridges are currently designed to either HS20 or HS30, the latter being 65% heavier than HS20-44. A reinforced concrete open spandrel arch bridge in Birecik, Turkey was analyzed using a service load approach according to AASHTO-SSHB with a heavy equipment transporter (HET), weighing 104,600?kg, as the live load. Dead load, live load, and impact were considered, and the analysis did not include any modification for possible deterioration, damage, or aging of the bridge. The bridge was not deemed adequate for passage of a HET using these assumptions.  相似文献   

14.
This study intends to provide a simplified analytical model of the laterally confined concrete filled steel tube (CCFT) column system which adopts carbon-fiber-reinforced polymer (CFRP) jackets in order to make up for major defects of the traditional concrete filled steel tube (CFT) column system. This CCFT analytical model, by adding one additional parameter for CFRP confinement to the CFT column analytical solution, is greatly simplified and expedites the analytical processes to explain the stress-strain relationship of the CCFT column system. In the study, several types of the CCFT column systems with different parameters are analyzed by the proposed simplified analytical model and its associated numerical program (USC-CFT). To verify the accuracy of the analytical model, this study compares the load-strain relationship calculated by USC-CFT both to the experimental results conducted by the traditional method and to the results calculated by the computer-aided finite element method (FEM) analysis method. This study shows equilibrium conditions, deformation compatibilities, constitutive models, and an analysis procedure used in the proposed simplified analytical solution and presents finite element models and analysis procedure used in FEM analysis.  相似文献   

15.
The present paper reports on the results from a series of full-scale experimental tests carried out on concrete-filled steel-grid bridge deck assemblies. The testing focused on assessing the fatigue performance and ultimate strength response of a full-depth-overfilled concrete-filled steel-grid deck configuration. The results from the experimental testing program described herein are compared with the predicted deck responses as per the current AASHTO provisions contained in the LRFD and 16th edition specifications.  相似文献   

16.
For military and civilian applications, there exists a need for lightweight, inexpensive, short-span bridges that can be easily transported and erected with minimal equipment. Owing to its favorable properties, fiber-reinforced polymer (FRP) has been shown to be feasible for the construction of such bridges. Investigations into the behavior of a short-span bridge structural concept, adapted to the material properties of commercially available glass FRP (GFRP) pultruded products, are presented. A 4.8-m span prototype was built from GFRP sections, bonded throughout to form a tapered box beam, with a width of 1.2?m and a height at midspan of approximately 0.5?m. The box beam represents a single trackway of a double-trackway bridge, whose trackways could be connected by light structural elements. The quasi-static and dynamic behavior of the prototype box beam was investigated in ambient laboratory and field conditions to assess the design and construction techniques used, with a view to designing a full-scale 10-m GFRP bridge. Laboratory testing of the prototype box beam used single and pairs of patch loads to simulate wheel loading. These tests confirmed that the box beam had sufficient stiffness and strength to function effectively as a single trackway of a small span bridge. Field testing of the structure was undertaken using a Bison vehicle (13,000?kg), driven at varying speeds over the structure to establish its response to realistic vehicle loads and the effects of their movement across the span.  相似文献   

17.
Compression tests were conducted on two reduced-scale orthotropic plates to verify the design strength of steel box girders for the new San Francisco–Oakland Bay Bridge. The first specimen was composed of three longitudinal closed ribs and a top deck plate. It failed in global buckling, followed by local buckling in the deck plate and ribs. The second specimen, which was composed of four longitudinal T-shaped ribs and a bottom deck plate, experienced global buckling as well as local buckling in the ribs and the deck plate. The ultimate strength and failure mode of both specimens were evaluated by two bridge design specifications: the 1998 AASHTO load and resistance factor design specification and the 2002 Japanese JRA specification. Findings from code comparisons showed that: (1) Sufficient flexural rigidity of ribs were provided for both specimens; (2) the JRA specification slightly overestimated the ultimate strength of both specimens; and (3) neither specifications predicted the observed buckling sequence in Specimen 2. A general-purpose nonlinear finite element analysis program (ABAQUS) was used to perform correlation study. The analysis showed that the ultimate strength and postbuckling behavior of the specimens could be reliably predicted when both the effects of residual stresses and initial geometric imperfections were considered in the model.  相似文献   

18.
This paper summarizes comprehensive experimental studies on scaled models of squat bridge columns repaired and retrofitted with advanced composite-material jackets. In the experimental program, a total of 14 half-scale squat circular and rectangular reinforced concrete columns were tested under fully reversed cyclic shear in a double bending configuration. In order to provide a basis for comparison, a total of three as-built columns were tested. Another 10 column samples were tested after being retrofitted with different composite jacket systems. One circular as-built column was repaired after failure. The repair process involved both crack injection as well as addition of carbon/epoxy composite jacket. The repaired column was then retested and evaluated. Experimental results showed that all as-built columns developed an unstable behavior and failed in brittle shear mode. The common failure mode for all retrofitted samples was due to flexure with significant improvement in the column ductility. The repaired column demonstrated ductility enhancement over the as-built sample.  相似文献   

19.
This paper extends Olson’s solution for one-dimensional consolidation under time-dependent loading with the assumption of constant coefficient of consolidation, to those with varying loading-dependent coefficients of consolidation. The investigation first presents the experimental study on a series of one-dimensional consolidation tests with various loading rate. Subsequently, the viscoelastic theory was applied to estimate the consolidation settlement and compared with the experimental results. Four consolidation tests with different loading rates were performed on three types of remolded clay soils with various plasticity indices to evaluate loading rate effects on the consolidation settlement. After explicitly performing the falling head permeability test at various stages during the conventional consolidation tests, the variation of coefficient of consolidation with external pressure was established and converted to the relationship between the coefficient of consolidation and the time of the corresponding pressure applied on the specimens for each loading rate test. The hereditary integral of viscoelastic theory was then applied to predict the settlement curve with time for each loading rate test. The findings indicate that the theoretical predictions using the loading-dependent coefficients of consolidation and experimental results in term of consolidation settlement are in good agreement.  相似文献   

20.
A finite-element formulation for the analysis of time-dependent failure of concrete is presented. The proposed formulation incorporates: (1) the viscoelastic behavior of uncracked concrete through a Maxwell chain model; and (2) the inelastic behavior of damaged concrete, characterized by a modified version of the microplane Model M4 which includes the rate dependence of fracturing. The proposed formulation is applied to the simulation of quasi-static concrete failure in the time domain. The different effects of creep and rate dependence of crack growth and their role in the lifetime of concrete structures are studied. The influence of different loading rates on the size effect is also analyzed with reference to single notched specimens, revealing the link between the size of the fracture process zone and the loading rate. The capability of the proposed numerical formulation is also verified for the case of sustained uniaxial compressive loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号