首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the case of horizontally curved steel I-girder bridges, girder and cross-frame members are frequently detailed for erection in the no-load condition as a matter of convention. As a result, it is imperative that the erection sequence used to construct such bridges be comprehensively studied to ensure that the no-load condition can be achieved in the field and that significant superstructure component fit-up problems do not occur. The current research investigates the erection of a recently constructed horizontally curved steel I-girder bridge, in which significant difficulties were encountered during erection. The bridge erection is recreated through an analytical simulation using a detailed nonlinear finite element model. The analytical results demonstrate that a condition that closely resembles the no-load condition can be achieved in the field during construction with the proper implementation of temporary support structures; and that the difficulties encountered during the erection of the subject bridge superstructure could not be attributed to the erection scheme followed.  相似文献   

2.
Special attention is required in the construction of horizontally curved steel I-girder bridges due to coupled effects of primary bending and torsional forces. Misguided steel erection procedures can lead to undesired stresses, deflections, and rotations in these types of bridges, resulting in a structure with misaligned geometry and in an unknown state of stress. Further complicating the issue, little guidance related to curved bridge behavior during construction is provided by current design codes, leaving contractors and designers uncertain as to the most appropriate steps to take to achieve an efficient, safe structure. A horizontally curved, six-span steel I-girder bridge located in central Pennsylvania that experienced severe geometric misalignments and fit-up complications during steel erection was studied to investigate curved girder behavior during construction. The structure was monitored during corrective procedures intended to realign it with the design geometry, and field data used to calibrate a three-dimensional computer model generated via SAP2000. The techniques and assumptions proven in the calibration process were used to create a numerical model of a three-span continuous portion of the bridge, which was the subject of several analyses exploring the effects erection sequencing, implementation of upper lateral bracing, and use of temporary supports had on the final deformed shape of the curved superstructure. Findings indicated that using paired girder erection produced smaller radial and vertical deformations than single girder techniques for this structure, and that the use of lateral bracing between the fascia and adjacent interior girders and the placement of temporary shoring towers at span quarter points are both effective means of further reducing levels of deflection.  相似文献   

3.
The erection of steel plate girders during the construction process of a steel bridge is a complex operation, which is often left to the contractor and/or the subcontractor to plan and execute. Rules of thumb have been developed through experience to check the lateral torsional buckling of the steel girder during erection using the maximum L/b (unbraced length/compressive flange width) ratio, below which no lateral torsional buckling would occur. Although the L/b ratio check has proven to be useful and convenient on-site, it is necessary to provide a more rational basis for the rules of thumb, and find the maximum L/b ratios by checking the lateral torsional buckling failure of girders under erection according to the latest AASHTO LRFD code. A series of parametric studies were conducted on cantilever and simply supported girders under self-weight as well as self-weight plus wind load, in order to: (1) check the rules of thumb on L/b ratios and (2) determine the effects of girder flange width, flange thickness, web depth, web thickness, and yield strength on the maximum L/b ratio and girder stability during erection. From the results, rules of thumb were modified for girders with common shapes, and it was obvious that (1) self-weight plus wind load controls the girder stability during erection in most cases and (2) flange width and web depth have the most effects on the maximum L/b ratio and girder stability during erection.  相似文献   

4.
This paper describes the design and evaluates the adequacy of the moment connection of an experimental two-span highway bridge designed by the Tennessee Department of Transportation. The Massman Drive Bridge is an experimental design that unifies the construction economy of simple span bridges and the structural economy of continuous span bridges. The experimental connection, consisting of cover plates and kicker wedge plates, is used to connect the two adjoining girders over the center pier. As a result, the bridge is designed to function as a continuous bridge during the deck pour and behave compositely with the reinforced concrete deck under the live load. After completing a moment comparison analysis, it is concluded that the Massman Drive Bridge indeed acts as continuous over the pier as it was designed.  相似文献   

5.
A series of studies on an experimental, full-scale curved steel bridge structure during erection are discussed. The work was part of the Federal Highway Administration’s curved steel bridge research project (CSBRP). The CSBRP is intended to improve the understanding of curved bridge behavior and to develop more rational design guidelines. The main purpose of the studies reported herein was to assess the capability of analytical tools for predicting response during erection. Nine erection studies, examining six different framing plans, are presented. The framing plans are not necessarily representative of curved bridge subassemblies as they would be erected in the field; however, they represent a variety of conditions that would test the robustness of analysis tools and assess the importance of erection sequence on initial stresses in a curved girder bridge. The simply supported, three I-girder system used for the tests is described and methods for reducing and examining the data are discussed. Comparisons between experimental and analytical results demonstrate that analysis tools can predict loads and deformations during construction. Comparison to the V-load method indicates that it predicts stresses in exterior girders well, but can underpredict them for interior girders.  相似文献   

6.
This paper describes the feasibility of 1,400 m steel cable-stayed bridges from both structural and economic viewpoints. Because the weight of a steel girder strongly affects the total cost of the bridge, the writers present a procedure to obtain a minimum weight for a girder that ensures safety against static and dynamic instabilities. For static instability, elastoplastic, finite-displacement analysis under in-plane load and elastic, finite-displacement analysis under displacement-dependent wind load are conducted; for dynamic instability, multimodal flutter analysis is carried out. It is shown that static critical wind velocity of lateral torsional buckling governs the dimension of the girder. Finally, the writers briefly compare a cable-stayed bridge with suspension bridge alternatives.  相似文献   

7.
For military and civilian applications, there exists a need for lightweight, inexpensive, short-span bridges that can be easily transported and erected with minimal equipment. Owing to its favorable properties, fiber-reinforced polymer (FRP) has been shown to be feasible for the construction of such bridges. Investigations into the behavior of a short-span bridge structural concept, adapted to the material properties of commercially available glass FRP (GFRP) pultruded products, are presented. A 4.8-m span prototype was built from GFRP sections, bonded throughout to form a tapered box beam, with a width of 1.2?m and a height at midspan of approximately 0.5?m. The box beam represents a single trackway of a double-trackway bridge, whose trackways could be connected by light structural elements. The quasi-static and dynamic behavior of the prototype box beam was investigated in ambient laboratory and field conditions to assess the design and construction techniques used, with a view to designing a full-scale 10-m GFRP bridge. Laboratory testing of the prototype box beam used single and pairs of patch loads to simulate wheel loading. These tests confirmed that the box beam had sufficient stiffness and strength to function effectively as a single trackway of a small span bridge. Field testing of the structure was undertaken using a Bison vehicle (13,000?kg), driven at varying speeds over the structure to establish its response to realistic vehicle loads and the effects of their movement across the span.  相似文献   

8.
Continuity diaphragms used in prestressed girder bridges on skewed bents have caused difficulties in detailing and construction. The results of the field verification for the effectiveness of continuity diaphragms for skewed, continuous, and prestressed concrete girder bridges are presented. The current design concept and bridge parameters that were considered include skew angle and the ratio of beam spacing to span (aspect ratio). A prestressed concrete bridge with continuity diaphragms and a skewed angle of 48° was selected for full-scale test by a team of engineers from Louisiana Department of Transportation and Development and the Federal Highway Administration. The live load tests performed with a comprehensive instrumentation plan provided a fundamental understanding of the load transfer mechanism through these diaphragms. The findings indicated that the effects of the continuity diaphragms were negligible and they can be eliminated. The superstructure of the bridge could be designed with link slab. Thus, the bridge deck would provide the continuity over the support, improve the riding quality, enhance the structural redundancy, and reduce the expansion joint installation and maintenance costs.  相似文献   

9.
The collapse of the State Route 69 Bridge over the Tennessee River near Clifton, Tennessee, is an example of how instability and lateral torsional buckling failure of a single steel bridge girder during erection might cause collapse of the whole steel superstructure. Close attention should be given to the stability of steel plate girders during erection when the lateral support provided to the compression flange might temporarily not be present. Rules of thumb in use today have been adopted by contractors/subcontractors to check the stability of cantilever or simply supported girders under erection using the L/b ratio, where L is the unbraced length and b is the compression flange width. For each girder section, a maximum L/b ratio exists beyond which lateral torsional buckling failure would occur under girder self-weight. Parametric studies were conducted following the latest AASHTO LRFD code in order to indentify the maximum L/b ratio for various girder sections and check the rules of thumb, as well as determine the dominating section parameters on girder stability under erection. Advanced nonlinear finite-element analyses were also conducted on a girder section for both the cantilever and the simply supported case in order to further understand the behavior of girder instability due to lateral torsional buckling under the self-weight, as well as to develop a trial-and-error methodology for identifying the maximum L/b ratio using computer analysis. At the same time, the effect of lateral bracing location on the cantilever free end has been investigated, and it turned out that bracing the top tension flange would be more effective to prevent lateral torsional buckling than bracing the bottom compression flange.  相似文献   

10.
The first prestressed segmental concrete bridge in the United States opened to traffic was a small bridge in Madison County, Tennessee. The bridge was constructed using prestressed concrete segments and was opened to traffic in October 1950. Prestressed concrete beams were placed side by side to form the superstructure of the bridge. The construction of this bridge and several other similar prestressed concrete bridges are described herein. The existing condition of eleven prestressed concrete bridges remaining in Tennessee is given. Only minor spalling, leaching, and horizontal cracking are present in the superstructure after fifty years of service. Many of the design features introduced in this design can be found in today’s modern precast segmental concrete bridges.  相似文献   

11.
The first modern metal cantilever bridge in the United States, using erection methods that were to be utilized in most future cantilever bridges, was by C. C. Schneider across the Niagara Gorge in 1883. The Niagara, saw in order, John Roebling’s Railroad Suspension Bridge, Samuel Keefer’s Honeymoon Suspension Bridge, Edward Serrell’s Lewiston-Queenston Suspension Bridge, Schneider’s cantilever, Leffert Buck’s arch bridge at the falls as well as Buck’s arch built under Roebling’s suspension bridge. Schneider’s bridge had a useful life of over 40 years during a period when rolling stock on the railroads was increasing rapidly. The speed of erection of a new style bridge coupled with its performance makes it one of the most innovative and significant bridges built in the world at the time.  相似文献   

12.
In the current AASHTO LRFD specifications, the fatigue design considers only one design truck per bridge with 15% dynamic allowance. While this empirical approach may be practical for regular short and medium span bridges, it may not be rational for long-span bridges (e.g., span length >152.4?m or 500?ft) that may carry many heavy trucks simultaneously. Some existent studies suggested that fatigue may not control the design for many small and medium bridges. However, little research on the fatigue performance of long-span bridges subjected to both wind and traffic has been reported and if fatigue could become a dominant issue for such a long-span bridge design is still not clear. Regardless if the current fatigue design specifications are sufficient or not, a real understanding of the traffic effects on bridge performance including fatigue is desirable since the one truck per bridge for fatigue design does not represent the actual traffic condition. As the first step toward the study of fatigue performance of long-span cable-stayed bridges under both busy traffic and wind, the equivalent dynamic wheel load approach is proposed in the current study to simplify the analysis procedure. Based on full interaction analyses of a single-vehicle–bridge–wind system, the dynamic wheel load of the vehicle acting on the bridge can be obtained for a given vehicle type, wind, and driving condition. As a result, the dimension of the coupled equations is independent of the number of vehicles, through which the analyses can be significantly simplified. Such simplification is the key step toward the future fatigue analysis of long-span bridges under a combined action of wind and actual traffic conditions.  相似文献   

13.
Recently, the construction industry has introduced fundamental changes for integration of functions during the different project phases. The design/build approach that integrates design and construction is a prominent example of such changes. Consequently, modifications are necessary in civil engineering education to prepare students to deal with the demands of the new environment. This paper documents a graduate project offering students the opportunity to study planning, design, procurement, and construction on a real-life project, and to deal with the problems of integrating these functions. The project is a steel footbridge of 10-m span and 1.5-m width. The bridge is located on the campus of the Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt. The project was accomplished by a group of five students with the participation of an industrial sponsor who provided the necessary funds to construct the bridge and the required expertise for fabrication and erection. The nature and scope of the project provided a good balance between the task scope and the constrained time and effort of students. To a large extent, the students dealt with a real project and experienced real situations.  相似文献   

14.
The University of Colorado at Denver has been studying the effect of wind pressure on historic bridges to determine the structural adequacy of these structures. A number of historic bridges have been field instrumented and tested to determine the member forces due to actual lateral wind pressures. This paper focuses on the instrumentation/data collection system developed for the project and field data collection for one bridge. The instrumentation/data collection system needed to be low cost due to the project budget and needed to obtain measurements at a sampling rate sufficiently rapid to capture short-duration wind gusts.  相似文献   

15.
Cantilever bridge construction can be said to have started with the work of Heinrich Gerber in Germany in 1867. While the principle had been used in many ancient bridges, it was not until Gerber’s work that metal bridges were built using the cantilever principle. The Kentucky High Bridge over the Kentucky River was the first modern cantilever bridge built in the United States. While James Eads had used the cantilever construction method at St. Louis, his bridge acted in service as a series of three arches. The High Bridge, designed by C. Shaler Smith, was one of the most daring and innovative bridges built in the country and carried its load between 1876 and 1912, when it was replaced by Gustave Lindenthal’s three span truss.  相似文献   

16.
Located at the rocky edge of the Yerba Buena Island, the west anchorage of the San Francisco–Oakland Bay Bridge suspension span serves as the anchor for this single tower self-anchored suspension bridge. With extensive comparative studies on numerous alternatives, the new looping cable anchorage system is recommended for the final design of the west anchorage of the self-anchored suspension span. The looping cable anchorage system essentially consists of a prestressed concrete portal frame, a looping anchorage cable, deviation saddles, a jacking saddle, independent tie-down systems, and gravity reinforced-concrete foundations. This anchorage system is chosen for its structural efficiency and dimensional compactness. This paper describes major design issues, design philosophy, concept development, and key structural elements and details of this innovative suspension cable anchorage system.  相似文献   

17.
One of the promising systems for accelerated bridge construction is the use of the decked precast prestressed concrete girders or decked bulb-tee girders for the bridge superstructure. Using the calibrated three-dimensional finite-element models through field tests, a parametric study was conducted to determine the effect of intermediate diaphragms on the deflections and flexural strains of girders at the midspan as well as the live load forces in the longitudinal joint. The following diaphragm details were considered: different diaphragm types (steel and concrete), different diaphragm numbers between two adjacent girders, and different cross-sectional areas for steel diaphragms. Five bridge models with different diaphragm details were developed, and the short span length effect on the bridge behavior was also studied. It was found that as long as one intermediate diaphragm was provided between two adjacent girders at midspan, changing the diaphragm details did not affect the girder deflection, the girder strain, and the live load forces in the longitudinal joint significantly. The effect of diaphragms on the midspan deflection was more prominent in the short span bridge; however, the reduction in the maximum bending moment by the diaphragms was more significant in the long span bridge than in the short span bridge. Specific design recommendation is provided in this paper.  相似文献   

18.
The Yongjong Grand Bridge includes a self-anchored suspension bridge with inclined cable planes. The bridge uses splay bands (cable collars) to flare the main cables at the anchorage, which is located at the end of a stiffening truss. During cable erection, some of the wires at the splay band were expected to experience lateral displacement and/or lift phenomena because of the large flare angles at the splay band. Mockup cable erection tests at the anchorage were carried out to find the degree of displacement of the wires and to determine appropriate measures to deal with these problems. Through these tests, methods to arrange wires at the splay bands were devised and tried, and the selected method was successfully used for the actual bridge.  相似文献   

19.
An investigation is conducted to characterize and quantify external effects in composite steel highway bridges under thermal loading. Based on the results of a literature review, including thermal and thermoelastic analyses as well as current design code provisions, a simple but realistic thermal loading is developed for winter and summer conditions for AASHTO load and resistance factor design (LRFD) Zone 3. Three cases of bearing orientation, representative of current design practice, are examined. Parametric studies are then conducted. Hypothetical bridges are designed for a range of different span lengths, section depths, widths, and skews. Each bridge model is tested under all three constraint cases and both winter and summer thermal loading. Variations in structural response with each parameter are plotted, and the relative influence of each parameter is discussed. Design equations to predict the observed displacements and restraint forces at the bearings are then developed by a systematic regression procedure. The applicability of these proposed design equations is demonstrated by examples.  相似文献   

20.
One principal element of the construction cost of a cast-in-place prestressed box girder concrete bridge is the erection of falsework. This paper presents the results of the analysis of labor-hours and quantity of work in erecting the falsework for 20 such bridges. Analysis of the bridge data has shown that the best productivity for falsework erection occurs when constructing a low structure on relatively flat ground. Location and design factors such as steep slopes, traffic openings, and tall structures, as well as such construction techniques as the use of cranes or lifts and the type of bent material selected, can reduce falsework erection productivity (measured through installation data for setting of pads, constructing bents, setting stringers, and rolling out the soffit) by over 50%. A belief network diagram was constructed to show graphically the falsework erection productivity influences identified through a study of the 20 bridges. With the collection of additional data, the belief network can be used to calculate a total falsework erection productivity value based on dozens of combinations of influencing factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号