首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main aim of this paper is to describe the problems that confront experimentalists who attempt to determine Newton's constant of gravitation, G. I will motivate this work by discussing the role of Newton's constant of gravitation in classical physics and recent ideas as to its role in quantum physics. I will then discuss some key aspects of a precision determination of G. This will include criteria for the selection of the detector of the gravitational torque from the point of view of random uncertainties due to read-out noise, thermal and vibrational noise. Another important factor in precise determinations of G is the control of systematic effects (type B uncertainties) such as those due to uncertainties in absolute calibration of the gravitational torque, density homogeneity of source masses and length metrology. I will illustrate the discussion using the determination of G currently underway at the International Bureau of Weights and Measures in France, and describe other experimental configurations that have been used in the past or are being currently developed.  相似文献   

2.
Carbon nanotubes, which consist of rolled graphene sheets built from sp(2) hybridized carbon atoms, are now attracting scientists from various disciplines due to their fascinating physico-chemical properties. In this account, we will review the recent progress on the synthetic techniques for the large-scale production of carbon nanotubes, especially focusing on the floating-catalyst method used in the chemical vapour deposition (CVD) process. We will also describe effective purification methods avoiding structural damage, and discuss the electrochemical applications of these systems including the fabrication of: (i) lithium-ion secondary batteries; (ii) lead-acid batteries; (iii) electric double-layer capacitors; (iv) fuel cells; and (v) multifunctional fillers in polymer composites. We foresee that carbon nanotubes will find numerous applications and take an important place in the development of emerging technologies in the near future.  相似文献   

3.
Eliminating human tuberculosis in the twenty-first century.   总被引:1,自引:0,他引:1       下载免费PDF全文
Recognizing that tuberculosis (TB) is still the leading cause of human death from a curable infection, the international health community has set ambitious targets for disease control. One target is to eliminate TB by 2050; that is, to cut the annual incidence of new cases to less than 1 per million population. National TB control programmes are working to eliminate TB mainly by intensifying efforts to find and cure patients with active disease. Here, we use mathematical modelling to show that, while most TB patients can be cured with present drug regimens, the 2050 target is far more likely to be achieved with a combination of diagnostics, drugs and vaccines that can detect and treat both latent infection and active disease. We find that the coupling of control methods is particularly effective because treatments for latent infection and active disease act in synergy. This synergistic effect offers new perspectives on the cost-effectiveness of treating latent TB infection and the impact of possible new TB vaccines. Our results should be a stimulus to those who develop, manufacture and implement new technology for TB control, and to their financial donors.  相似文献   

4.
Carbon is one of the elements most abundant in nature. It is essential for living organisms and, as an element, occurs in several morphologies. Nowadays, carbon is encountered widely in our daily lives in its various forms and compounds, such as graphite, diamond, hydrocarbons, fibres, soot, oil, complex molecules, etc. However, in the last decade, carbon science and technology have enlarged its scope following the discovery of fullerenes (carbon nanocages) and the identification of carbon nanotubes (rolled graphene sheets). These novel nanostructures possess physico-chemical properties different from those of bulk graphite and diamond. It is expected that numerous technological applications will arise using such fascinating structures. This account summarizes the most relevant achievements regarding the production, properties and applications of nanoscale carbon structures and, in particular, of carbon nanotubes. It is believed that nanocarbons will be crucial for the development of emerging technologies in the following years.  相似文献   

5.
Atmospheric aerosols versus greenhouse gases in the twenty-first century   总被引:1,自引:0,他引:1  
Looked at in a simplistic way, aerosols have counteracted the warming effects of greenhouse gases (GHG) over the past century. This has not only provided some 'climate protection', but also prevented the true magnitude of the problem from becoming evident. In particular, it may have resulted in an underestimation of the sensitivity of the climate system to the effect of GHG. Over the present century, the role of aerosols in opposing global warming will wane, as there are powerful policy reasons to reduce their emissions and their atmospheric lifetimes are short in contrast to those of the GHG. On the other hand, aerosols will continue to play a role in regional climate change, especially with regard to the water cycle. The end of significant climate protection by atmospheric aerosols, combined with the potentially very high sensitivity of the climate system, makes sharp and prompt reductions in greenhouse gas emissions, especially CO2, very urgent.  相似文献   

6.
7.
8.
9.
We review the proposal of the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), currently being considered by the General Conference on Weights and Measures (Conférences Générales des Poids et Mesures, CGPM), to revise the International System of Units (Le Système International d'Unitès, SI). The proposal includes new definitions for four of the seven base units of the SI, and a new form of words to present the definitions of all the units. The objective of the proposed changes is to adopt definitions referenced to constants of nature, taken in the widest sense, so that the definitions may be based on what are believed to be true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and mole are linked to exact numerical values of the mass of the international prototype of the kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature of water and the molar mass of carbon-12, respectively, in the new SI these units are linked to exact numerical values of the Planck constant, the elementary charge, the Boltzmann constant and the Avogadro constant, respectively. The new wording used expresses the definitions in a simple and unambiguous manner without the need for the distinction between base and derived units. The importance of relations among the fundamental constants to the definitions, and the importance of establishing a mise en pratique for the realization of each definition, are also discussed.  相似文献   

10.
I investigate the potential for sudden climate change during the current century. This investigation takes into account evidence from the Earth's history, from climate models and our understanding of the physical processes governing climate shifts. Sudden alterations to climate forcing seem to be improbable, with sudden changes instead most likely to arise from climate feedbacks. Based on projections from models validated against historical events, dramatic changes in ocean circulation appear unlikely. Ecosystem-climate feedbacks clearly have the potential to induce sudden change, but are relatively poorly understood at present. More probable sudden changes are large increases in the frequency of summer heatwaves and changes resulting from feedbacks involving hydrology. These include ice sheet decay, which may be set in motion this century. The most devastating consequences are likely to occur further in the future, however. Reductions in subtropical precipitation are likely to be the most severe hydrologic effects this century, with rapid changes due to the feedbacks of relatively well-understood large-scale circulation patterns. Water stress may become particularly acute in the Southwest US and Mexico, and in the Mediterranean and Middle East, where rainfall decreases of 10-25% (regionally) and up to 40% (locally) are projected.  相似文献   

11.
Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.  相似文献   

12.
13.
14.
Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.  相似文献   

15.
Taking the Special Report on Emission Scenarios (SRES) climate and socio-economic scenarios (A1FI, A2, B1 and B2 'future worlds'), the potential impacts of sea-level rise through the twenty-first century are explored using complementary impact and economic analysis methods at the global scale. These methods have never been explored together previously. In all scenarios, the exposure and hence the impact potential due to increased flooding by sea-level rise increases significantly compared to the base year (1990). While mitigation reduces impacts, due to the lagged response of sea-level rise to atmospheric temperature rise, impacts cannot be avoided during the twenty-first century by this response alone. Cost-benefit analyses suggest that widespread protection will be an economically rational response to land loss due to sea-level rise in the four SRES futures that are considered. The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible. Future worlds which experience larger rises in sea-level than considered here (above 35 cm), more extreme events, a reactive rather than proactive approach to adaptation, and where GDP growth is slower or more unequal than in the SRES futures remain a concern. There is considerable scope for further research to better understand these diverse issues.  相似文献   

16.
Glänzel  Wolfgang  Zhang  Lin 《Scientometrics》2018,115(3):1517-1532
Scientometrics - Proceeding from Moravcsik’s paradigmatic ideas of how to build indigenous capability and sustainable science systems in developing countries, we attempted to further focus on...  相似文献   

17.
Here we review the situation of laser corneal refractive surgery in the twenty-first century. We pay special attention to the change in aberrations, covering the compensation of the loss of ablation efficiency at non-normal incidence, the effects of cyclotorsional errors, aspheric, wavefront optimized and aberration neutral concepts, and centration of refractive profiles. A review of the clinical outcomes is provided including myopic, hyperopic, and astigmatic, as well as wavefront customized or presbyopic outcomes.  相似文献   

18.
19.
20.
We formalize the Gaia hypothesis about the Earth climate system using advances in theoretical biology based on the minimization of variational free energy. This amounts to the claim that non-equilibrium steady-state dynamics—that underwrite our climate—depend on the Earth system possessing a Markov blanket. Our formalization rests on how the metabolic rates of the biosphere (understood as Markov blanket''s internal states) change with respect to solar radiation at the Earth''s surface (i.e. external states), through the changes in greenhouse and albedo effects (i.e. active states) and ocean-driven global temperature changes (i.e. sensory states). Describing the interaction between the metabolic rates and solar radiation as climatic states—in a Markov blanket—amounts to describing the dynamics of the internal states as actively inferring external states. This underwrites climatic non-equilibrium steady-state through free energy minimization and thus a form of planetary autopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号