首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TaSiN is a promising material for application as electrically conductive diffusion barrier for the integration of high permittivity perovskite materials in integrated circuits. TaSiN thin films were deposited by reactive radio frequency magnetron sputtering using TaSi and TaSi2.7 targets in an Ar/N2 atmosphere. The sputter power was varied in order to achieve different TaSiN compositions. The stoichiometry of as-deposited films was estimated using Rutherford backscattering spectroscopy. The as-deposited TaSiN thin films are amorphous. Their crystallization temperature is above 700 °C and increases with higher nitrogen content. They have metallic conduction and ohmic behavior. The resistivity of as deposited films is in the range from 10− 6 Ω m up to 10− 3 Ω m and increases with nitrogen content. It was found that p++-Si/Ta21Si57N21 develops unacceptable high contact resistance. Introducing an intermediate Pt layer the stack p++-Si/Pt/Ta21Si57N21 had a good conductive properties and good thermal stability at 700 °C.  相似文献   

2.
Thin ZrNxOy films are deposited on Si (100) substrates by radio frequency (RF) reactive magnetron sputtering of a zirconium target in an argon-oxygen-nitrogen mixture. The ΦN2/Φ(Ar + N2 + O2) ratio was varied in the range 2.5%-100% while the oxygen flux was kept constant. The films were characterized by combining several techniques: X-ray photoelectron spectroscopy, X-ray diffraction and Secondary Ion Mass Spectroscopy. The relationship between structural and compositional properties and the sputtering parameters was investigated. Increasing nitrogen partial pressure in the gas mixture, a chemical and structural evolution happens. At lowest nitrogen flux, ZrN cubic phase is formed with a very small amount of amorphous zirconium oxynitride. At highest nitrogen flux, only crystalline ZrON phases were found. For the films obtained between these two extremes, a co-presence of ZrN and ZrON can be detected. In particular, chemical analysis revealed the co-presence of ZrO2, ZrN, ZrON and N-rich zirconium nitride which is correlated with the ΦN2/Φ(Ar + N2 + O2) values. A zirconium nitride crystal structure with metal vacancies model has been considered in order to explain the different chemical environment detected by X-ray photoelectron spectroscopy measurements. The metal vacancies are a consequence of the deposition rate decreasing due to the target poisoning. It's evident that the growth process is strongly influenced by the zirconium atoms flux. This parameter can explain the structural evolution.  相似文献   

3.
We present the relationship between parameters of reactive RF diode sputtering from a zinc oxide (ZnO) target and the crystalline, electrical and optical properties of n-/p-type ZnO thin films. The properties of the ZnO thin films depended on RF power, substrate temperature and, particularly, on working gas mixtures of Ar/O2 and of Ar/N2. Sputtering in Ar+O2 working gas (up to 75% of O2) improved the structure of an n-type ZnO thin film, from fibrous ZnO grains to columnar crystallites, both preferentially oriented along the c-axis normally to the substrate (〈0 0 2〉 direction). These films had good piezoelectric properties but also high resistivity (ρ≈103 Ω cm). ZnO:N p-type films exhibited nanograin structure with preferential 〈0 0 2〉 orientation at 25% N2 and 〈1 0 0〉 orientation for higher N2 content. The presence of nitrogen NO at O-sites forming NO-O acceptor complexes in ZnO was proven by SIMS and Raman spectroscopy. A minimum value of resistivity of 790 Ω cm, a p-type carrier concentration of 3.6×1014 cm−3 and a Hall mobility of 22 cm2 V−1 s−1 were obtained at 75% N2.  相似文献   

4.
High-index low-loss Gallium Phosphide thin films for visible light have been produced by radio frequency magnetron sputtering in an argon environment. This broadens the high refractive index limit of transparent optical materials using a physical deposition process. Energy-dispersive x-ray analysis and spectroscopic ellipsometry were used to characterize the stoichiometry and optical properties. A post-deposition high-temperature anneal was found to be necessary to restore the proper stoichiometric ratio and to reduce the absorption. The annealing conditions were optimized by an in-situ fiber-optic transmission spectrum monitoring system. The films exhibit a high refractive index (N = 3.23) and a low extinction coefficient (K = 0.029) at 633 nm. Such high index GaP films have broad applications in nanophotonic device designs.  相似文献   

5.
The effect of nitrogen flow rate on structure and properties of (Ti,Zr)N thin films was investigated in the study. Two types of (Ti,Zr)N thin films were found with different nitrogen flow rates, one is the single-phase solid solution of (Ti,Zr)N that appeared for nitrogen flow rates of 2-7 sccm, the other one is the phase of both (Ti,Zr)N and TiZr mixture for the lower nitrogen flow rates of 1 sccm. The grain size of the films was also determined by X-ray diffraction, and the size was less than 20 nm. The (Ti,Zr)N films show excellent hardness ranging from 35.5 to 37.5 GPa with exhibiting (111) preferred orientation.  相似文献   

6.
桑敏  刘发民  丁芃  毋二省  王天民 《功能材料》2005,36(7):1126-1130
Transparent titania thin films were prepared on glass substrates by radio frequency magnetron sputtering from TiO2 ceramic target. The structure and morphology of those films with different sputtering power and substrate temperature has been measured with X-ray diffractometer (XRD) and atomic force microscope (AFM). It was found that the films were anatase and a mix of anatase-rutile with different condition. The transmission of the films has been studied by using UV-VIS-NIR spectrometer. It shows absorption edge has a little red shift with the increase of sputtering power and substrate temperature. The photocatalytic activity of the films was tested on the degradation of Rhodamine B solution. T.he highest degradation efficiency in our experiment was obtained in the film deposited at 550℃ and 130W.  相似文献   

7.
Germanium carbon (GeC) thin films were prepared on ZnS substrates by reactive RF magnetron sputtering in Ar and CH4 mixtures with a Ge disc as the target. H content in the films was studied as a function of the deposition parameters and low H content GeC film was obtained. RF power had a little effect on IR absorptions, hence had a little effect on H content. IR absorption of the GeC film increased a little with the increase in partial pressure of CH4 as well as total pressure of gas mixture. Increase in substrate temperature decomposed CH4 and CHx in the GeC film into C and H and H was desorbed from the film, lowering the IR absorption. However, high substrate temperature prevented CH4 or CHx from adsorbing onto the substrate, which decreased C content in the GeC film and increased the film's refractive index. Higher annealing temperature of the GeC film reduced H content, but high annealing temperature (500 °C) caused the graphitization of the GeC film and destroyed its continuity.  相似文献   

8.
S.M. Kang  S.G. Yoon  D.H. Yoon 《Thin solid films》2008,516(11):3568-3571
Tantalum nitride thin films were deposited by radio frequency (RF) reactive sputtering at various N2/Ar gas flow ratios and working pressures to examine the change of their electrical resistivity. From the X-ray diffraction (XRD) and four-point probe sheet resistance measurements of the TaNx films, it was found that the change of the crystalline structures of the TaNx films as a function of the N2 partial pressure caused an abrupt change of the electrical resistivity. When the hexagonal structure TaN thin films changed to an f.c.c. structure, the sheet resistance increased from 16 Ω/sq to 1396 Ω/sq. However, we were able to control the electrical resistivity of the TaN thin film in the range from 69 Ω/sq to 875 Ω/sq, with no change in crystalline structure, within a certain range of working pressures. The size of the grains in the scanning electron microscopy (SEM) images seemed to decrease with the increase of working pressure.  相似文献   

9.
利用中频反应磁控溅射技术在1Cr18Ni9Ti不锈钢基底上沉积ZrN薄膜。通过控制N/Ar、溅射功率和基体偏压等参数,得到不同实验条件的ZrN膜层。通过对膜层颜色测量和AES分析,研究N分压强对ZrN膜层质量的影响。实验结果表明:工作气压0.3Pa,溅射功率5kW,基体偏压-150V、占空比50%等工艺参数一定的前提下,N分压强在不同的范围内,可以分别制备出视觉效果类似于18K、23K和纯金的氮化锆膜层。  相似文献   

10.
Al-doped ZnO thin films were deposited by radio frequency magnetron sputtering using a ZnO target with 2 wt.% Al2O3. The structures and properties of the films were characterized by the thin film X-ray diffraction, high resolution transmission electron microscopy, Hall system and ultraviolet/visible/near-infrared spectrophotometer. The Al-doped ZnO film with high crystalline quality and good properties was obtained at the sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250 °C. The results of further structure analysis show that the interplanar spacings d are enlarged in other directions besides the direction perpendicular to the substrate. Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping concentration of Al is more than 1.5 wt.%, part of Al atoms are incorporated in the interstitial site, which leads to the increase of lattice parameters. This viewpoint is also proved by the first principle calculations.  相似文献   

11.
Hydroxyapatite (HA) films have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered films are usually amorphous which can cause some serious adhesion problems when post-deposition heat treatment is necessitated. In this paper we present an opposing radio frequency (RF) magnetron sputtering approach for the preparation of HA thin films on various substrates at low power levels. Using this alternative RF magnetron geometry, as-sputtered HA films are nearly stoichiometric, highly crystalline, and strongly bound to the substrate. Post-deposition heat treatment under 800 °C did not result in a marked improvement in the degree of crystallinity of the films. In addition, dissolution experiments show that as-sputtered films are more stable than annealed ones. As-sputtered films grown on amorphous silica substrates exhibit X-ray diffraction (XRD) patterns similar to those of randomly orientated HA powder. On the other hand, films deposited on oriented substrates such as Si(100) and Si(111) show a polycrystalline HA XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. The results suggest that the opposing RF magnetron sputtering approach has some potential to produce high quality HA films on metallic implants.  相似文献   

12.
The search for alternative dielectric materials with high dielectric constant, thermodynamic stable on silicon substrate and low direct tunneling current leads to oxide based materials like zirconia. Zirconia thin films were prepared by reactive magnetron sputtering. The capacitance voltage, ac and dc electrical characteristics were investigated and the values like fixed oxide charges were calculated and compared among the samples with and without annealing. Films annealed at 700 °C showed a dielectric constant ∼ 26 with interface trap densities of 1.629 × 1012 eV− 1 cm− 2.  相似文献   

13.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

14.
采用独立的Ti靶和Al靶,用射频反应磁控溅射方法,逐步控制氧流量在高速钢(W18Cr4V)基体上沉积了一系列具有不同氧含量的TiAlNO薄膜。研究了氧流量对薄膜组织结构、硬度和摩擦性能的影响。结果表明,在(Ti,Al)N中加入氧形成由(Ti,Al)(N,O)纳米晶和(TiO2,Al2O3)非晶组成的复合结构。随着氧流量的增加,薄膜中晶体相晶格常数逐步减小,其取向则逐步从(111)为主转变为(111)和(200)混合。同时薄膜硬度缓慢地下降,摩擦系数和磨损量先减少后增大,在氧流量为0.9sccm时达到最小值。研究同时表明,当氧流量为0.9sccm时薄膜具有最小摩擦系数和高耐磨性,同时保持了高硬度,综合性能最好。  相似文献   

15.
Cu doped zinc titanate (ZnTiO3) films were prepared using radio frequency magnetron sputtering. Subsequent annealing of the as-deposited films was performed at temperatures ranging from 600 to 900 °C. It was found that the as-deposited films were amorphous and contained 0.84 at.% Cu. This was further confirmed by the onset of crystallization that took place at annealing temperatures 600 °C. The phase transformation for the as-deposited films and annealed films was investigated in this study. The results showed that Zn2Ti3O8, ZnTiO3, and TiO2 can coexist at 600 °C. When annealed at 700 °C, the results revealed that mainly the hexagonal ZnTiO3 phase formed, accompanied by minority amounts of TiO2 and Zn2Ti3O8. Unlike pure zinc titanate films, this result showed that the Zn2Ti3O8 phase can be stable at temperatures above 700 °C. Moreover, Cu addition in zinc titanate thin film could result in the decomposition of hexagonal (Zn,Cu) TiO3 phase at 800 °C. When the Cu content was increased in zinc titanate thin films from 0.84 at.% to 2.12 at.%, there were only two phases; Zn2Ti3O8 and ZnTiO3, coexisting at temperatures between 700 and 800 °C. This result indicated that a greater presence of Cu dopants in zinc titanate thin films leads to the existence of the Zn2Ti3O8 phase at higher temperatures.  相似文献   

16.
Ruqiang Bao 《Thin solid films》2010,519(1):164-2642
Boron carbide thin films were deposited by radio frequency (RF) magnetron sputtering and characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high resolution transmission electron microscopy. The results reveal that the structure of thin films deposited at substrate temperatures lower than 350 °C is amorphous. We found that there are four chemical states for carbon in amorphous boron carbide thin films deposited by RF magnetron sputtering. One is the segregated carbon in form of the graphitic inclusions in the thin film identified by Raman spectroscopy and Raman mapping using two strong peaks at ~ 1360 cm− 1 and ~ 1590 cm− 1, but the XPS results show that the graphitic inclusions do not connect to the substrate directly. On the surface the carbon forms C=O bonds characterized by the peak of C1s core level at 285.0 eV besides B-C bonds in the boron carbide with the peak of C1s being at 282.8 eV. The detailed analysis of B-C bonds in the boron carbide shows that there are two states for carbon atoms in B-C bonds: in the C-B-C models with C1s peak at 282.3 eV and in the icosahedra with C1s peak at 283.3 eV.  相似文献   

17.
Thin films of titanium oxynitride were successfully prepared by dc reactive magnetron sputtering using a titanium metallic target, argon, nitrogen and water vapour as reactive gases. The nitrogen partial pressure was kept constant during every deposition whereas that of the water vapour was systematically changed from 0 to 0.1 Pa. The evolution of the deposition rate with an increasing amount of water vapour injected into the process was correlated with the target poisoning phenomenon estimated from the target potential. Structure and morphology of the films were analysed by X-ray diffraction and scanning electron microscopy. Films were poorly crystallised or amorphous with a typical columnar microstructure. Nitrogen, oxygen and titanium concentrations were determined by Rutherford backscattering spectroscopy and nuclear reaction analysis, and the amount of hydrogen in the films was also quantified. Optical transmittance in the visible region and electrical conductivity measured against temperature were gradually modified from metallic to semiconducting behaviour with an increasing supply of the water vapour partial pressure. Moreover, an interesting maximum of the electrical conductivity was observed in this transition, for a small amount of water vapour.  相似文献   

18.
Zinc nitride films were deposited on glass or silicon substrates by reactive magnetron radio frequency sputtering of zinc in either N2-Ar or N2-Ar-O2 ambient. The effects of varying the nitrogen contents and the substrate temperature were investigated. X-ray diffraction data showed that the as-deposited films contain the zinc nitride cubic crystalline phase with a preferred orientation, and Raman scattering measurements revealed ZnN related modes. According to energy-dispersive X-ray spectroscopy analysis, the as-deposited films were nitrogen-rich and contained only a small fraction of oxygen. Hall-effect measurements showed that p-type zinc nitride with carrier concentration of ~ 1019 cm−3, mobility of ~ 101 cm2/Vs, resistivity of ~ 10−2 Ω ∗ cm, was obtained. The photon energy dependence of optical transmittance suggested that the material has an indirect bandgap.  相似文献   

19.
Yibin Li  Weidong Fei  Cong Xu 《Thin solid films》2007,515(23):8371-8375
Nd-substituted SrBi2Ta2O9 (SNBT) thin films are sputtered on Pt/Ta/SiO2/Si substrates. X-ray diffraction and x-ray photoelectron spectroscopy studies indicate that Nd3+ is substituted into the bismuth layered perovskite structure, preferentially at the Sr2+ site. The annealed thin film is polycrystalline with plate/needle-like grain microstructure. Secondary ion mass spectrometry results show that elements in SNBT thin film homogeneously distribute along film depth and interfacial diffusion takes place during post annealing. The Nd substitution leads to enhanced remnant polarization (2Pr = 18 μC/cm2) and reduced coercivity (2Ec = 64 kV/cm) at 180 kV/cm measured at 25 °C. After 1010 switching cycles, around 9% remnant polarization is decreased.  相似文献   

20.
中频双靶反应磁控溅射制备TiO2膜的一些探索   总被引:7,自引:0,他引:7  
具有高折射率的TiO2膜在反射型液晶显示器的关键部件高反射率背板膜系的制备中起重要作用,本文使用国内首家在线中频双靶反应磁控溅射设备进行了制备TiO2膜的探索,完成了相应的膜层测试与分析。实验结果表明双靶磁控反射溅射可以制备高折射率的TiO2膜,实验还从折射率的角度证明中频双靶反应溅射与直流反应溅射的效果一致,为进一步提高膜层沉积速率以适应工业生产需求需要引入更有效的溅射过程控制手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号