首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 72 毫秒
1.
为了克服按矩阵加权信息融合非稳态Kalman滤波器的在线计算负担大的缺点,和按标量加权融合Kalman滤波器精度较低的缺点,应用现代时间序列分析方法,提出了按对角阵加权的线性最小方差多传感器信息融合稳态Kalman滤波器.它等价于状态分量按标量加权信息融合Kalman滤波器,实现了解耦信息融合Kalman滤波器.它的精度和计算负担介于按矩阵和按标量加权融合器两者之间,且便于实时应用.为了计算最优加权,提出了计算稳态滤波误差方差阵和协方差阵的Lyapunov方程.一个三传感器的雷达跟踪系统的仿真例子说明了其有效性.  相似文献   

2.
基于线性最小方差最优加权融合估计算法,对多传感器的离散线性状态时滞随机系统,给出了一种非增广分布式加权融合最优Kalman滤波器.推导了状态时滞系统任两个传感器子系统之间的滤波误差互协方差阵的计算公式.它与状态增广加权融合滤波器具有相同的精度.与每个传感器的局部滤波器相比,分布式融合滤波器具有更高的精度.与状态和观测增广最优滤波器相比,具有较小的精度.但避免了增广所带来的高维计算和大的空间存储,可减小计算负担.仿真例子验证了其有效性.  相似文献   

3.
协方差交叉融合鲁棒Kalman滤波器   总被引:1,自引:0,他引:1  
对于带未知互协方差的两传感器系统,提出一种协方差交叉(CI)融合鲁棒稳态Kalman滤波器,它关于未知互协方差具有鲁棒性.严格证明了该滤波器的实际精度高于每个局部滤波器的精度,但低于带已知互协方差的最优融合Kalman滤波器的精度.基于协方差椭圆给出了精度关系的几何解释.进一步将上述结果推广到一般多传感器情形.一个跟踪系统的Monte-Carlo仿真例子表明,其实际精度接近于带已知互协方差的最优融合器的精度.  相似文献   

4.
石莹  段广仁 《控制与决策》2006,21(3):339-342
考虑了广义离散随机线性系统的多传感器信息融合状态估计问题.在广义系统无脉冲的假设条件下。通过等价变换将其转化为正常系统.应用经典Kalman滤波方法,在线性最小方差信息融合准则下,提出了按矩阵加权的广义系统多传感器信息融合稳态Kalman状态滤波器.仿真结果说明了算法的有效性。  相似文献   

5.
基于强跟踪滤波器的多传感器信息融合应用研究   总被引:3,自引:0,他引:3  
在对经典Kalman滤波器和强跟踪Kalman滤波器分析的基础上,给出了改进的强跟踪Kalman滤波器方法,并进一步给出了改进的强跟踪Kalman滤波器分布式信息融合方法。该方法底层采用改进的强跟踪器滤波,上层采用估计误差方差最小方法进行分布式信息融合,信息融合结果精度高,同时对突变信号有很强的实时跟踪能力。仿真结果表明该方法的有效性和可靠性。  相似文献   

6.
对于带未知噪声方差的多传感器系统,用相关方法给出了噪声方差的在线估值器,进而基于Riccati方程和按分量标量加权最优融合规则,提出了自校正分量解耦信息融合Kalman滤波器.用动态误差系统分析方法证明了自校正融合Kalman滤波器按实现收敛于最优融合Kalman滤波器,因而具有渐近最优性.一个3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

7.
应用Kalman滤波方法,在按矩阵加权线性最小方差最优信息融合规则下,提出了带白色观测噪声的多通道ARMA信号的多传感器信息融合Wiener滤波器.它可统一处理信息融合滤波、平滑和预报问题.为了计算最优加权阵,提出了计算局部滤波误差互协方差阵的公式.同单传感器情形相比,可提高估计精度.一个带三传感器的目标跟踪系统的仿真例子说明了其有效性.  相似文献   

8.
多传感器标量加权最优信息融合稳态Ka lman 滤波器   总被引:12,自引:1,他引:12  
提出一种新的标量加权多传感器线性最小方差意义下的最优信息融合准则.该准则考虑了局部估计误差之间的相关性,只需计算加权标量系数,避免了加权矩阵的计算,明显减小了计算量,便于实时应用.运用稳态Kalman滤波理论,基于该融合准则,给出了多传感器最优信息融合稳态Kalman滤波器.在所有局部滤波器达到稳态时,只需一次融合便可获得信息融合稳态滤波器,算法简单.仿真例子验证了其有效性.  相似文献   

9.
对带不确定参数和噪声方差的多传感器定常系统,引入虚拟白噪声补偿不确定参数,可将其转化为带已知参数和不确定噪声方差系统.应用极大极小鲁棒估值原理和加权最小二乘法,基于带噪声方差保守上界的最坏情形保守系统,提出了鲁棒加权观测融合Kalman滤波器,并证明了它与集中式融合鲁棒Kalman滤波器是等价的,且融合器的鲁棒精度高于每个局部滤波器鲁棒精度.一个Monte-Carlo仿真例子说明了如何寻求不确定参数的鲁棒域和如何搜索保守性较小的虚拟噪声方差上界.  相似文献   

10.
对于带未知有色观测噪声的多传感器线性离散定常随机系统, 未知模型参数和噪声方差的一致的融合估值器用递推增广最小二乘法(RELS)和求解相关函数方程得到. 将这些估值器代入到最优解耦融合Kalman滤波器中, 得出了自校正解耦融合Kalman滤波器, 并用动态方差误差系统分析(DVESA)和动态误差分析(DESA)方法证明了它收敛于最优解耦融合Kalman滤波器, 因而具有渐近最优性. 一个带3传感器跟踪系统的仿真例子说明了其有效 性.  相似文献   

11.
Multi-sensor optimal information fusion Kalman filter   总被引:3,自引:0,他引:3  
This paper presents a new multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, it is equivalent to the maximum likelihood fusion criterion under the assumption of normal distribution. Based on this optimal fusion criterion, a general multi-sensor optimal information fusion decentralized Kalman filter with a two-layer fusion structure is given for discrete time linear stochastic control systems with multiple sensors and correlated noises. The first fusion layer has a netted parallel structure to determine the cross covariance between every pair of faultless sensors at each time step. The second fusion layer is the fusion center that determines the optimal fusion matrix weights and obtains the optimal fusion filter. Comparing it with the centralized filter, the result shows that the computational burden is reduced, and the precision of the fusion filter is lower than that of the centralized filter when all sensors are faultless, but the fusion filter has fault tolerance and robustness properties when some sensors are faulty. Further, the precision of the fusion filter is higher than that of each local filter. Applying it to a radar tracking system with three sensors demonstrates its effectiveness.  相似文献   

12.
针对互协方差信息未知的多传感器系统,本文提出了一种快速对角阵权系数协方差交叉融合算法(FDCI).本文首先提出了一种对角阵权系数协方差交叉融合(DCI)方案,并证明了所提出DCI算法在融合估计精度上高于经典批处理CI融合(BCI)算法.在此基础之上,针对非线性等复杂的互协方差未知的多传感器系统,提出FDCI算法,并证明了所提出FDCI算法的无偏性及鲁棒精度. FDCI融合算法虽然在融合估计精度上低于DCI,但FDCI无需进行多权系数的非线性代价函数的优化问题,进而大大降低了计算负担,提高了系统的实时性.最后,结合容积卡尔曼滤波算法(CKF)提出了快速对角阵权系数协方差交叉融合容积卡尔曼滤波算法.仿真实例验证了所提出算法的正确性和有效性.  相似文献   

13.
针对复杂道路条件下车辆的导航问题,将全球定位系统(GPS)与车载终端传感器系统相结合,提出了基于多传感器系统的车辆精确定位模型,并针对扩展类卡尔曼滤波易产生突发性误差而导致的安全问题,采用基于Sigma点的无迹卡尔曼滤波器(UKF)传感器信息融合算法。根据实时的道路状况和车辆自身的运动状态给出符合要求的状态估值,实验与基于多项式扩展卡尔曼滤波车辆传感器信息融合算法在精度和效率方面进行了比较,结果表明,基于UKF传感器信息融合的算法在复杂路况下的估计精度和运行效率都有显著提高,能够根据当前的路线情况和车载传感器的反馈信息快速地估计出车辆的运动状态,实时计算出动态的车辆控制输入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号