首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
含钛、锆、铁纳米级固体超强酸酯化活性的研究   总被引:3,自引:0,他引:3  
张萍 《河北化工》2002,(6):19-20
制备了纳米级SO4^2-/TiO2、SO4^2-/ZrO2、SO4^2-/Fe2O3固体超强酸催化剂,考察了其对正丁醇和乙酸的酯化活性,表明SO4^2-/TiO2的活性最好,SO4^2-/ZrO2次之,SO4^2-/Fe2O3较差。  相似文献   

2.
采用共沉淀法和浸渍法制备了S2O8^2-/NiFe2O4复合固体超强酸催化剂,并以乙酸和乙醇为原料合成了乙酸乙酯,考察了Fe:Ni的原子配比,焙烧温度,焙烧时间,浸渍液浓度等对催化剂催化性能的影响。结果表明:当Fe:M原子比为2:1,焙烧温度为500℃,焙烧时间为5h,浸渍液浓度为0.5mol/L时,催化活性最好,酯化率可达83.50%,重复使用5次以上酯化率仍不低于80.0%。该工艺产率高,腐蚀性及污染性小,催化剂可回收、活化、重复使用。  相似文献   

3.
S2O82-/ZrO2-SiO2固体超强酸催化剂的研制   总被引:1,自引:0,他引:1  
通过沉淀-浸渍法制备一系列S2O82-/ZrO2-SiO2固体超强酸催化剂,用乙酸和异丁醇的酯化反应研究了制备条件对催化剂活性的影响.实验结果表明,当n(Zr):n(Si)=1:3时,催化剂对乙酸和异丁醇的酯化反应具有很高的催化活性.同时用XRD、SEM、IR和化学分析等手段分析了S2O82-/ZrO2-SiO2固体超强酸催化剂的晶化过程、比表面积、含硫量.  相似文献   

4.
在铁锆氧化物中引入硅的氧化物,并用S2O2-8浸渍铁锆硅复合氧化物,制得较S2O2-8/Fe2O3-ZrO2(PSFZ)和SO2-4/Fe2O3-ZrO2-SiO2(SFZS)催化活性更强的固体酸催化剂S2O2-8/Fe2O3-ZrO2-SiO2(PSFZS),研究获得最佳制备条件.用马来酸酐与正己醇的酯化反应考察了催化剂活性.XRD和TEM结果表明,制备的催化剂S2O2-8对铁锆硅复合氧化物的促进作用明显好于SO2-4;SiO2 和Fe2O3的引入使催化剂呈现多孔结构,分散性好,其稳定性增加,催化活性提高;用该催化剂代替硫酸和对甲苯磺酸用于催化马来酸酐和正己醇的酯化反应,可得无色透明的酯化产物,3 h内酯化率达97.9%,分别比PSFZ和PSFZS催化剂提高约10%和20%.  相似文献   

5.
用S2O2-8 浸渍铁锆复合氧化物制得固体酸催化剂S2O2-8/Fe2O3-ZrO2(PSFZ),得到了较佳的制备条件,用马来酸酐与正己醇的酯化反应考察了催化剂的活性.通过XRD和TEM分析,对催化剂的结构进行了表征.结果表明,PSFZ的催化活性比SO2-4 /Fe2O3-ZrO2更强;S2O2-8对Fe2O3-ZrO2的促进作用明显高于SO2-4;铁的引入减少了ZrO2的团聚,增加了分散效果;有较好的使用重复性;它代替硫酸、对甲苯磺酸用于催化马来酸酐和正己醇的酯化反应可得无色透明的酯化产物.  相似文献   

6.
本文采用单因素实验法,研究了固体超强酸催化剂S2O2-8/ZrO2-Al2O3-TiO2的制备工艺.结果表明,S2O2-8/ZrO2-Al2O3-TiO2的最佳制备条件为:n(Zr):n(Al):n(Ti)=1:3:1,(NH4)2S2O8浸渍液浓度0.5mol·L-1,浸渍时间2h,焙烧温度300℃,焙烧时间6h.此外,用红外光谱对固体酸进行了结构表征,以乙酸正丁酯的酯化反应对其酸催化活性进行了初步研究.  相似文献   

7.
采用共沉淀法和浸渍法制备了S2O2-8/NiFe2O4复合固体超强酸催化剂,并以乙酸和乙醇为原料合成了乙酸乙酯,考察了Fe∶Ni的原子配比,焙烧温度,焙烧时间,浸渍液浓度等对催化剂催化性能的影响.结果表明:当Fe∶Ni原子比为2∶1,焙烧温度为500℃,焙烧时间为 5 h,浸渍液浓度为 0.5 mol/L时,催化活性最好, 酯化率可达83.50%,重复使用5次以上酯化率仍不低于80.0%.该工艺产率高,腐蚀性及污染性小,催化剂可回收、活化、重复使用.  相似文献   

8.
以固体超强酸SO4^2-/Fe2O3-CoO为催化剂,通过己酸和乙醇反应合成了己酸乙酯。实验结果表明,固体超强酸SO4^2-/Fe2O3-CoO对酯化具有较高的催化活性,反应的最佳条件为:己酸0.2mol,n(乙醇):n(己酸):1.8:1.0,催化剂用量为0.8g(以0.2mol己酸为准),带水剂用量为12mL,反应时间为2h,其酯化率可达97%以上。  相似文献   

9.
固体酸S2O2-8/ZrO2-SiO2催化合成马来酸二辛酯   总被引:3,自引:0,他引:3  
李建华  华平 《应用化工》2003,32(3):30-32
用S2O8^2-浸渍锆硅复合氧化物,制得固体酸催化剂S2O8^2-/ZrO2-SiO2。用马来酸酐与正辛醇的酯化反应考察了催化剂的活性,并与硫酸、对甲苯磺酸等催化剂的催化效果比较。结果表明:对于给定反应,S2O8^2-对ZrO2-SiO2的促进作用明显高于S24^2-;当n(Zr):n(Si)为l:6,用硝酸铵作硅酸钠的沉淀剂,用0.7mol/L,的过硫酸铵浸渍12h,在550℃下焙烧3h制得的催化剂S2O8^2-/ZrO2-SiO2具有最高的催化活性,用于催化马来酸酐和正辛醇的酯化反应,可得无色透明的酯化产物,3h内酯化率达98.4%,较S2O8^2-/ZrO2-SiO2催化剂的酯化率提高了约18%.  相似文献   

10.
通过浸渍法制备SO2-4/Fe2O3(SF)固体超强酸,将γ-Al2O3纳米纤维通过粘附的方法负载到固体超强酸SO2-4/ Fe2O3上,制得SO2-4/Fe2O3-γ-Al2O3(SFA)固体超强酸催化剂,并选用乙酸和丁醇的酯化反应来测试SO2-4/Fe2O3-γ-Al2O3(SFA)固体超强酸催化剂的催化性能,在不同催化剂种类、不同γ-Al2O3加入量、不同焙烧温度和时间以及不同浸渍液种类和浓度的条件下,对催化活性进行了分析和讨论.  相似文献   

11.
以Al2O3, Fe2O3和Na2CO3为原料,对Na2O-Al2O3-Fe2O3系烧结过程中的反应行为进行了详细研究. 基于溶出率与时间、温度的关系,证明Na2O×Al2O3和Na2O×Fe2O3的生成反应动力学都服从Zhuralev-Lesokin-Tempelman模型,表观活化能分别为186.59和80.92 kJ/mol,表明Na2O×Fe2O3比Na2O×Al2O3在动力学上更易形成;Al2O3易与Na2O×Fe2O3反应形成Na2O×Al2O3和Fe2O3,在1273 K烧结30 min,所得熟料Al2O3溶出率达98.51%;Fe2O3对Na2O×Al2O3的形成有双重作用,在1273 K下可加速Na2O×Al2O3的形成,超过1323 K,促使Na2O×Al2O3分解成Na2O和b-Al2O3,且随着温度升高或时间延长,分解程度增高,从而导致熟料中Al2O3溶出率显著降低.  相似文献   

12.
介绍了Cr2O3-Al2O3-ZrO2制品的组成及各组成的作用、烧成气氛、制品的显微结构特征和性能指标.着重论述了影响制品性能的烧成工艺和以电熔、烧结两种Cr2O3颗粒生产的Cr2O3-Al2O3-ZrO2制品的显微结构差异,表明在还原气氛下烧成的Cr2O3-Al2O3-ZrO2制品性能优良,而采用电熔Cr2O3料生产的Cr2O3-Al2O3-ZrO2制品性能优于使用烧结Cr2O3料生产的.  相似文献   

13.
Fe2O3-GeO2-SiO2-K2O 复合催化剂合成2,3,6-三甲基苯酚   总被引:1,自引:0,他引:1  
研制筛选出组成为Fe2O3-GeO2-SiO2-K2O 复合催化剂,确定较优化的制备条件、反应条件和再生方法。单管放大试验表明,该催化剂具有操作条件温和、反应活性及选择性高(间甲酚转化率接近100%,2,3,6-三甲基苯酚选择性96%以上)、使用寿命长(3 000 h以上)、操作性能稳定、操作弹性大和易于再生等综合性能,适合于工业生产。  相似文献   

14.
掌握Fe2+/H2O2体系O2的生成路径,可为避免H2O2无效分解,开发经济高效的Fe2+/H2O2体系利用技术指明方向。采用添加自由基捕获剂的方法,探究Fe2+/H2O2体系内各种自由基对O2生成速率的影响,进而确定O2的生成路径。结果表明:Fe2+/H2O2体系内不会产生大量O2-·,O2-·不是生成O2的主要反应物质;O2-·被全部捕获后,体系中仍产生大量O2-·,但此时无O2生成,证明生成O2的反应由·OH和HO2·两种自由基直接参与。分析认为反应·OH+HO2·-H2O+O2是体系内O2生成的主要路径。控制Fe2+/H2O2体系定向生成·OH,抑制HO2·的产生,是提高Fe2+/H2O2体系中H2O2利用率的有效手段。  相似文献   

15.
V2O5-Fe2O3 and V2O5-TiO2 systems represent two important chemical systems with various applications, including energy, catalysts, and high-performance materials. In the present study, high-temperature phase equilibrium experiments were conducted at the temperature range of 670–1000°C in air. Electron probe X-ray micro-analyzer (EPMA) was used to analyze the microstructure and composition of the phases presented in quenched samples. Systematic experiments demonstrated that V2O5-containing systems should not be quenched by water-based quenching media. Phase diagrams in both systems were constructed, and the eutectic and peritectic points of the systems were confirmed and compared with previous studies. The present study improved the previous results and could be used as the base for thermodynamic modelings and further applications of the two systems.  相似文献   

16.
用Y2O3-Al2O3-SiO2钎料进行Si3N4的连接   总被引:2,自引:0,他引:2  
本文用二种Y2O3-Al2O3-SiO2(YAS)钎料进行Si3N4/Si3N4的连接研究.在20kPaN2,1450℃~1650℃保温15min的实验条件下,Si3N4/Si3N4的接头强度随连接温度的增加先增后降.微观分析表明:接头强度与YAS/Si3N4的界面扩散反应和接头残留玻璃相的厚度有关.  相似文献   

17.
以ZrO2为晶核剂,根据DSC图谱制定合理的热处理制度,制备了磷扩散源P2O5-Al2O3-SiO2系微晶玻璃。采用XRD分析观察了P2O5-Al2O3-SiO2系微晶玻璃的析晶状况,热膨胀仪测试了该微晶玻璃的膨胀系数,分析La2O3的含量对P2O5-Al2O3-SiO2系微晶玻璃在高温下释放P2O5速率的影响。结果表明:随着La2O3含量增加,P2O5-Al2O3-SiO2系微晶玻璃中晶体含量增加,主晶相未发生改变,都为磷酸锆晶体;同时,该微晶玻璃的热膨胀系数相对降低,P2O5的释放速率也随之增加。  相似文献   

18.
固体超强酸催化剂S2O2-8/Fe2O3-Al2O3的制备及其酯化性能   总被引:2,自引:0,他引:2  
以硝酸铁为铁源、硝酸铝为铝源,通过共沉淀法制备固体超强酸催化剂S2O2-8/Fe2O3-Al2O3。通过催化剂样品的FT-IR谱图、不同焙烧温度催化剂样品的XRD谱图、不同陈化温度的N2吸附-脱附曲线以及催化剂样品的SEM照片,研究了其晶体的形成过程。催化剂样品红外谱图表明,催化剂中的S=O有较强的共价双键特征,诱导催化剂形成超强酸性;在XRD谱图中既无Al2O3的晶相峰,也无Fe2(SO4)3晶相峰,说明Al2O3与Fe2O3 在催化剂样品的表面形成了Al2O3-Fe2O3 共价键的复杂结构。采用BET方程和BJH模型计算催化剂样品的比表面积和孔径分布,经冰水陈化的催化剂样品平均孔径为9.1 nm,最可几孔径为7.5 nm,比表面积为78.9 m2·g-1,孔容0.149 cm3·g-1。研究了催化剂的铁与铝物质的量比、(NH4)2S2O8浸渍浓度和不同焙烧温度对硬脂酸正丁酯酯化率的影响。在反应温度85 ℃、催化剂用量0.2 g (为反应物总质量的2%)和回流反应150 min的条件下,酯化率可达84.5%。  相似文献   

19.
徐研  钟文建 《陶瓷》2007,(4):42-44
实验采用正交实验法和对比实验,通过对R2O-RO-AlO3-B2O3-SiO2系统的成釉机理分析及熔融特性、熔体的粘度和表面张力等性能的测试,探讨了该系统在骨质瓷中的应用。  相似文献   

20.
TNT的O3/H2O2降解规律   总被引:7,自引:3,他引:4  
利用自制装置,采用连续投加O3、H2O2的方式,研究了O。/H:O:对废水中TNT的降解规律。结果表明,与Oa作用相比,O3/H2O2工艺可显著提高TNT的降解率,还可避免中间产物的形成与积累;在试验研究条件下,H2O2:O3的最优摩尔比为1,最佳初始pH值在11左右,利用缓冲溶液可维持反应体系pH值的稳定,但不利于O3/H2O2功效的发挥,反应适合在常温下进行,尽量避开40℃左右;动力学特征分析表明,O/H2O2降解TNT偏离伪一级反应动力学规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号