首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Low- and wide-angle X-ray diffraction were used to determine the structural organization of lipids isolated from the stratum corneum extracellular matrix that forms the major water permeability barrier in mammalian epidermis. Hydrated pig skin ceramides gave a single low-angle reflection of about 62 angstroms and a wide-angle-reflection at 4.15 angstroms. The addition of either cholesterol or fatty acid, the other major lipid components of the skin stratum corneum extracellular matrix, modified this diffraction pattern, depending on the lipid mole ratios. In the absence of water, lipid mixtures exhibited lipid phase separation, as shown by low- and wide-angle reflections typical of a separate cholesterol phase. However, a hydrated 2:1:1 mole ratio of ceramide:cholesterol:palmitic acid (similar to that found in stratum corneum) produced a diffraction pattern with a single sharp wide-angle reflection at 4.10 angstroms and low-angle reflections which indexed as the first eight orders of a single repeat period of 130 angstroms. The repeat period and intensity distribution of the low-angle data were similar to those found in intact stratum corneum [White et al. (1988) Biochemistry 27, 3725-3732; Bouwstra et al. (1994) Biochim. Biophys. Acta 1212, 183-192]. Higher concentrations of cholesterol or palmitic acid resulted in lipid phase separations. The 130 angstrom repeat period decreased only about 3 angstroms as water was removed by incubation in low-relative humidity atmospheres. The 130 angstrom repeat period depended on the presence of a particular ceramide, N-(omega-acyloxy)-acylsphingosine, which is found only in the epidermis. In contrast, 2:1:1 mixtures of brain ceramide:cholesterol:palmitic acid gave reflections of 56 and 34 angstroms. These results indicate that a structure with dimensions similar to those of the lamellar repeating unit found in skin stratum corneum does not depend on the presence of protein but does depend on the presence of specific skin ceramides and appropriate concentrations of cholesterol and fatty acid.  相似文献   

2.
This study employed large unilamillar vesicles composed of purchased stratum corneum lipids to investigate the binding/partition of amino acids/dipeptides to stratum corneum lipid vesicles. The partition coefficients of amino acids/dipeptides between the stratum corneum lipid vesicles and the acetate buffer were determined by HPLC. In addition, the binding/partition enthalpy of amino acids/dipeptides with the stratum corneum lipid vesicles was derived by directly measuring the binding/partition heat with isothermal titration calorimetry. According to the binding/petition Gibbs free energy and the binding/partition enthalpy, all the binding/partition of amino acids/dipeptides with the stratum corneum lipid vesicles is endothermic, implying an entropy-driven binding/partition. Also, the equilibrium binding/partition results demonstrate that the partition coefficients of amino acids/dipeptides do not correlate with the transdermal permeability. This finding suggests that either the interaction between the penetrants and the lipid bilayer between corneocytes may not be a determining step or that the paracellular path is not a dominant route of transdermal penetration.  相似文献   

3.
The phase properties and structural characteristics of stratum corneum (SC) lipid lamellae have been a subject of considerable interest. To clarify the individual role of the stratum corneum constituent lipids, such as ceramides, free fatty acids, and cholesterol, we investigated the thermotropic properties and aggregation structures of a pseudo-ceramide/stearic acid (1/1 mole ratio)-cholesterol system, which is a simplified model for the natural lipids. Differential scanning calorimetry (DSC) detected decreases of melting entropies (delta Sm) by the incorporation of cholesterol into both anhydrous and hydrated equimolar mixture of pseudo-ceramide (SLE) and stearic acid. Moreover, there was a linear relationship between the cholesterol content and the melting entropies in the region of 0-33 mol% cholesterol for both the anhydrous and hydrate lipids. In addition, as the concentration of cholesterol increased, a liquid lateral packing (4.5 A) appeared in the wide-angle X-ray diffraction and the intensity of a hexagonal packing (4.15 A) decreased. The results from the present study strongly follow the idea that cholesterol can regulate the mobility of hydrocarbon chains of the natural stratum corneum lipid bilayer, which is primarily responsible for the barrier properties.  相似文献   

4.
BACKGROUND: Topical application of inhibitors of HMGCoA reductase, the rate-limiting enzyme of cholesterol synthesis, has been shown to induce impairment of barrier function. OBJECTIVE: Assessing whether oral administration of statins used for reducing blood levels of cholesterol induces functional changes in stratum corneum barrier. MATERIALS AND METHODS: 69 subjects of both sexes under-going treatment for hypercholesterolemia (mean age 48 +/- 11 years) entered the study; 43 had been treated with simvastatin and 11 with pravastatin for 6 months; 15 only on dietary regimen served as controls. Efficiency of stratum corneum water barrier was evaluated by transepidermal water loss (TEWL) measurement using an evaporimeter; water-holding capacity of the stratum corneum was assessed by the sorption-desorption test measured by capacitance. Statistical analysis was performed using ANOVA. RESULTS: No differences were found between the groups (simvastatin, pravastatin, diet) concerning both basal TEWL and the dynamic of water binding in the stratum corneum. CONCLUSIONS: Prolonged treatment with cholesterol-lowering drugs based on inhibition of HMGCoA reductase does not alter the permeability barrier of the skin.  相似文献   

5.
Stratum corneum lipids play a predominant role in maintaining the water barrier of the skin. In order to understand the biological variation in the levels and composition of ceramides, ceramide 1 subtypes, cholesterol and fatty acids, stratum corneum lipids collected from tape strippings from three body sites (face, hand, leg) of female Caucasians of different age groups were analysed. In addition, we studied the influence of seasonal variation on the lipid composition of stratum corneum from the same body sites. The main lipid species were quantified using high-performance thin-layer chromatography and individual fatty acids using gas chromatography. Our findings demonstrated significantly decreased levels of all major lipid species, in particular ceramides, with increasing age. Similarly, the stratum corneum lipid levels of all the body sites examined were dramatically depleted in winter compared with spring and summer. The relative levels of ceramide 1 linoleate were also depleted in winter and in aged skin whereas ceramide 1 oleate levels increased. The other fatty acid levels remained fairly constant with both season and age, apart from lignoceric and heptadecanoic acid which showed a decrease in winter compared with summer. The decrease in the mass levels of intercellular lipids and the altered ratios of fatty acids esterified to ceramide 1, are likely to contribute to the increased susceptibility of aged skin to perturbation of barrier function and xerosis, particularly during the winter months.  相似文献   

6.
Turbidity (absorbance at 470 nm) measurements revealed human serum low density lipoprotein (LDL) to cause, within a few minutes and at physiological pH and [NaCl], the aggregation of liquid crystalline large unilamellar liposomes (LUVs) of dimyristoylphosphatidylglycerol (DMPG). No evidence for concomitant lipid or aqueous contents mixing was obtained with fluorescent assays for these processes, in keeping with the lack of fusion of LUVs. Involvement of apoB is implicated by the finding that tryptic digestion of LDL abrogates its ability to cause aggregation. Aggregation is not caused by VLDL, HDL2, or HDL3. Interestingly, also oxidised LDL failed to aggregate DMPG vesicles. Aggregation of DMPG LUVs by LDL did depend on the ionic strength of the medium as well as on the phase state of the lipid. More specifically, below the main transition temperature Tm maximal aggregation was seen in the presence of 25-100 mM NaCl, whereas slightly higher (up to 150 mM) [NaCl] were required when T>Tm. Aggregation due to LDL was also observed for dimyristoylphosphatidylserine as well as for dipalmitoylphosphatidylglycerol LUVs, whereas liposomes composed of either unsaturated acidic phospholipids or different phosphatidylcholines were not aggregated. Involvement of electrostatic attraction between the acidic phosphate of DMPG and cationic residues in apoB is suggested by the finding that increasing the content of dimyristoylphosphatidylcholine (DMPC) in DMPG liposomes reduced their aggregation and at XDMPC=0.50 no response was evident. Notably, increasing the mole fraction of 1-palmitoyl-2-oleyl-PG (POPG) in DMPG LUVs progressively reduced their aggregation by LDL and at XPOPG=0.50 there was complete inhibition. The latter effect of POPG is likely to be due to augmented hydration of the unsaturated lipid constituting a barrier for the contact between apoB and the vesicle surface. In keeping with this view, the presence of the strongly hygroscopic polymer, poly(ethylene glycol) at 1% (by weight) enhanced the aggregation and could partly reverse the inhibition by POPG.  相似文献   

7.
The uptake of the anticancer agent doxorubicin into large unilamellar vesicles (LUVs) exhibiting a transmembrane pH gradient (inside acidic) has been investigated using both kinetic and equilibrium approaches. It is shown that doxorubicin uptake into the vesicles proceeds via permeation of the neutral form and that uptake of the drug into LUVs with an acidic interior is associated with high activation energies (Ea) which are markedly sensitive to lipid composition. Doxorubicin uptake into egg-yolk phosphatidylcholine (EPC) LUVs exhibited an activation energy of 28 kcal/mol, whereas for uptake into EPC/cholesterol (55:45, mol/mol) LUVs Ea = 38 kcal/mol. The equilibrium uptake results obtained are analyzed in terms of a model which includes the buffering capacity of the interior medium and the effects of drug partitioning into the interior monolayer. From the equilibrium uptake behaviour, a doxorubicin partition coefficient of 70 can be estimated for EPC/cholesterol bilayers. For a 100 nm diameter LUV, this indicates that more than 95% of encapsulated doxorubicin is partitioned into the inner monolayer, presumably located at the lipid/water interface. This is consistent with 13C-NMR behaviour as a large proportion of the drug appears membrane associated after accumulation as reflected by a broadening beyond detection of the 13C-NMR spectrum. The equilibrium accumulation behaviour of a variety of other lipophilic amines is also examined in terms of the partitioning model.  相似文献   

8.
In a search for pathogenetic mechanisms underlying retention hyperkeratosis, we examined the pH gradient over the stratum corneum in 13 male patients suffering from either x-linked recessive (XRI) or autosomal dominant ichthyosis vulgaris. For recording pH values, a flat glass electrode was repeatedly applied to the skin during tape stripping of mildly involved forearm skin. Before stripping, surface pH was higher in ichthyosis vulgaris (5.3 +/- 0.7; n = 7) than in XRI (4.6 +/- 0.4; n = 6; p < 0.05) and healthy control men (4.5 +/- 0.2; n = 7; p < 0.01). Removal of stratum corneum, which required 100-240 strippings in ichthyotic skin and 80-120 strippings in healthy control skin, disclosed markedly different pH variations in the two types of ichthyosis. The major abnormality in ichthyosis vulgaris skin was that a neutral pH was attained already halfway through the horny layer, possibly reflecting a congenital lack of acidic breakdown products from keratohyaline. By contrast, stripping of XRI skin revealed a shallow pH gradient that plateaued at 6.2-6.6, instead of about 7 as in normal and ichthyosis vulgaris skin. A likely explanation is the XRI-associated accumulation of cholesterol sulfate in lower stratum corneum. Our results suggest that the "acid mantle" of normal skin, which penetrates deep into the stratum corneum, is the combined result of cornification-associated organic acids and back-diffusion of acid material from the surface. Because corneocyte desquamation involves many pH-dependent enzymes, abnormalities in the transcorneal pH gradient might play a role in the pathogenesis of ichthyosis.  相似文献   

9.
The barrier function of the skin resides in the stratum corneum (SC). This outermost layer consists of protein-rich corneocytes and lipid-rich intercellular domains. These domains form the rate-limiting step for transepidermal water loss and the penetration of substances from the environment. To study the nature of the barrier function, stratum corneum lipid models have been examined with wide-angle X-ray diffraction. A disadvantage of this technique is that it requires bulk quantities of lipid and thus information on variations in the lateral packing cannot be obtained in the microm-range. To the best of our knowledge, this is the first study in which electron diffraction is applied on SC lipid model systems. Using this technique, local structural information was obtained about mixtures prepared from isolated pig ceramides, cholesterol, and long-chain free fatty acids. It appeared that addition of free fatty acids caused a transition from a hexagonal to an orthorhombic packing and that electron diffraction can be applied to distinguish between these two lattices. The results are in good agreement with wide-angle X-ray diffraction data and suggest that application of electron diffraction in skin studies can provide new information on the lipid organization in well-defined areas of the stratum corneum.  相似文献   

10.
Fourier-transform infrared spectroscopy (FT-IR) has been applied to the quantitative study of the dehydration of the phosphatidylserine phosphate group in the presence of Ca2+ exerted by different molecules, such as diacylglycerol, sphingosine and stearylarnine, by using a partial least-squares statistical procedure. By using this method it was observed that diacylglycerol enhanced the dehydration of this PO2- group produced by Ca2+ whereas the amino-bases sphingosine and stearylamine protected the phosphate group from the dehydration produced by Ca2+ due to the very strong electrostatic interaction established. The apparent pKa of lipid carboxyl groups can also be estimated by using FTIR. The method consisted in quantifying the absorbance intensities due to the protonated and the unprotonated forms of the specific group being studied. The pKa of the carboxyl group of [1-13C]-palmitic acid included in dipalmitoylphosphatidylcholine membranes was found to be 8.7, a value much higher than that estimated from a molecular solution of the fatty acid. It was observed using the same method that the pKa of free fatty acids in model stratum corneum lipid mixtures was in the range 6.2-7.3 increasing with the preponderance of oleic acid over palmitic acid. Finally the pKa of the carboxyl group of phosphatidylserine was shifted from 4.6 in the pure phospholipid to 2.1 and 2.2 in the presence of equimolar sphingosine and stearylamine, respectively, as a consequence of electrostatic interactions.  相似文献   

11.
Vitamin D deficiency affects the lipid composition and Ca2+ uptake of intestinal basolateral membranes from chick intestine. The increased cholesterol content causes an increase in the molar ratio cholesterol/phospholipid. Phospholipid classes remain unchanged, but the percentages of arachidonic acid from the from the major phospholipid fractions are increased. After 24 hours of oral administration of 2,000 IU of cholecalciferol to vitamin D-deficient chicks, the cholesterol values do not change, but the amount of arachidonic acid returns to normal values. Ca2+ uptake driven by ATP is diminished in vesicles from intestinal basolateral membranes of vitamin D-deficient chicks. Cholecalciferol treatment returns these values to the controls which might be due mainly to the increased number of Ca2+ pump units. In conclusion, changes in lipid composition and in Ca2+ pump caused by vitamin D deficiency seems to play a role in the decrease of vesicular Ca2+ transport. A single dose of cholecalciferol restores only partially the lipid-protein changes produced by vitamin D deficiency.  相似文献   

12.
A new method, based on the ion-translocating properties of the ionophores nigericin and A23187, is described for loading large unilamellar vesicles (LUVs) with the drugs vincristine and ciprofloxacin. LUVs composed of distearoylphosphatidylcholine/cholesterol (DSPC/Chol) (55:45 mol/mol) or sphingomyelin (SPM)/Chol (55:45 mol/mol) exhibiting a transmembrane salt gradient (for example, internal solution 300 mM MnSO4 or K2SO4; external solution 300 mM sucrose) are incubated in the presence of drug and, for experiments involving divalent cations, the chelator EDTA. The addition of ionophore couples the outward movement of the entrapped cation to the inward movement of protons, thus acidifying the vesicle interior. External drugs that are weak bases can be taken up in response to this induced transmembrane pH gradient. It is shown that both nigericin and A23187 facilitate the rapid uptake of vincristine and ciprofloxacin, with entrapment levels approaching 100% and excellent retention in vitro. Following drug loading, the ionophores can be removed by gel exclusion chromatography, dialysis, or treatment with biobeads. In vitro leakage assays (addition of 50% mouse serum) and in vivo pharmacokinetic studies (in mice) reveal that the A23187/Mn2+ system exhibits superior drug retention over the nigericin/K+ system, and compares favorably with vesicles loaded by the standard DeltapH or amine methods. The unique features of this methodology and possible benefits are discussed.  相似文献   

13.
The inner stratum corneum is likely to represent the location of the intact skin barrier, unperturbed by degradation processes. In our studies of the physical skin barrier a new high-performance liquid chromatography (HPLC)-based method was developed for the quantitative analysis of lipids of the inner stratum corneum. All main lipid classes were separated and quantitated by HPLC/light scattering detection (LSD) and the free fatty acid fraction was further analysed by gas-liquid chromatography (GLC). Mass spectrometry (MS) was used for peak identification and flame ionization detection (FID) for quantitation. Special attention was paid to the free fatty acid fraction since unsaturated free fatty acids may exert a key function in the regulation of the skin barrier properties by shifting the physical equilibrium of the multilamellar lipid bilayer system towards a noncrystalline state. Our results indicated that the endogenous free fatty acid fraction of the stratum corneum barrier lipids in essence exclusively consisted of saturated long-chain free fatty acids. This fraction was characterized as a very stable population (low interindividual peak variation) dominated by saturated lignoceric acid (C24:0, 39 molar%) and hexacosanoic acid (C26:0, 23 molar%). In addition, trace amounts of very long-chain (C32-C36) saturated and monounsaturated free fatty acids were detected in human forearm inner stratum corneum. Our analysis method gives highly accurate and precise quantitative information on the relative composition of all major lipid species present in the skin barrier. Such data will eventually permit skin barrier model systems to be created which will allow a more detailed analysis of the physical nature of the human skin barrier.  相似文献   

14.
A water-soluble synthetic peptide with only nine amino acid residues, comprising the 131-139 sequence region of the cytotoxic protein alpha-sarcin (secreted by the mold Aspergillus giganteus), interacts with large unilamellar vesicles composed of acid phospholipids. It promotes lipid mixing between bilayers and leakage of vesicle aqueous contents, and it also abolishes the phospholipid phase transition. Other larger peptides containing such an amino acid sequence also produce these effects. These peptides acquire alpha-helical conformation in the presence of trifluoroethanol, but display beta-strand conformation in the presence of sodium dodecyl sulfate. The interaction of these peptides with the lipid vesicles also results in beta-structure. The obtained data are discussed in terms of the involvement of the 131-139 stretch of alpha-sarcin in its interaction with lipid membranes.  相似文献   

15.
When cytochrome b5 is added to large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), it binds predominantly in a 'loose,' or transferable form. Prolonged incubation of 30 degrees C leads to insertion in the physiological 'tight,' nontransferable form, with a halftime for the loose --> tight conversion of approx. 9 days. In this study, the effect of cholesterol on the rate of tight insertion was determined. Tight binding was assayed by depleting the LUVs of loose cytochrome b5 with an excess of SUV acceptors and then separating the liposome populations by gel-filtration or velocity sedimentation. Incorporation of cholesterol into the LUVs was found to markedly increase the rate of tight insertion, even though cholesterol decreases the equilibrium binding constant and saturation level of protein binding. The effect is not a continuously increasing function of cholesterol content, but attains a maximum at 20-25% mol%, where the rate enhancement is approx. 10-fold over baseline. At higher cholesterol levels, the rate decreases, returning to baseline at 40 mol% cholesterol. These observations are highly unusual in that cholesterol generally decreases the membrane binding affinity and the permeability of solutes, and does so as a monotonic function of cholesterol concentration (above the liquid-crystalline phase transition of the phospholipids). It is suggested that tight insertion is enhanced by lipid-protein packing mismatches and by bilayer fluidity; the former increases monotonically with increasing cholesterol whereas the latter decreases monotonically. At 20-25 mol% cholesterol the optimum balance of these physical properties is obtained for tight insertion.  相似文献   

16.
Controlled heating of acetylcholine receptor (AChR) vesicles inactivates the alpha-bungarotoxin (alpha-Bgtx) binding sites with a T50 (temperature at which 50% of the initial capacity to bind alpha-Bgtx remains) of 60 +/- 0.2 degrees C. The same value was obtained for receptor reconstituted in lipid vesicles from Torpedo electroplax where the % mol composition of cholesterol to phospholipid was 30. However, when the reconstitution was carried out in dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidic acid (DOPA) vesicles (3:1 molar ratio), T50 of the curves decreased to 56 +/- 0.2 degrees C and no carbamylcholine stimulated 22Na+ flux was detected. Inclusion of cholesterol in the DOPC-DOPA vesicles increased the toxin binding site stability. The maximal T50 of the toxin binding curves was 63 +/- 0.1 degrees C when the % mol cholesterol/mol DOPC:DOPA in the vesicles was 33. Under these conditions AChR was able to translocate ions, a property that was lost upon heating at 46 degrees C. Preincubation of AChR in the presence of d-tubocurarine, tetracaine or procaine did not affect T50 values of toxin binding. However, a slight increment in thermal stability was found when the receptor was preincubated in the presence of carbamylcholine. The results show that cholesterol requirements for protecting against thermal inactivation of toxin binding and ion gating properties are different and the carbamylcholine-bound receptor may have a different conformation.  相似文献   

17.
The present study was undertaken to characterize the effects of ursodeoxycholic acid on biliary lipid metabolism in man. Fifteen gallstone patients were treated with ursodeoxycholic acid at a daily dosage of 15 mg per kg body weight for about 4 weeks before cholecystectomy. At operation a liver biopsy, together with gallbladder and hepatic bile, were obtained. Eighteen untreated gallstone patients undergoing cholecystectomy served as controls. During treatment with ursodeoxycholic acid, hepatic bile became unsaturated with cholesterol in all patients investigated. The total biliary lipid concentration remained unchanged. The hepatic cholesterol concentration decreased by about 20%. No significant change in the microsomal HMG CoA reductase activity was observed (38.5 +/- 6.7 pmol . min-1 . mg protein-1 vs 38.3 +/- 4.7 pmol . min-1 . mg protein-1 in the controls; means +/- SEM). Plasma concentrations of total cholesterol were reduced by about 10%, and those of high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol by about 15%. Plasma triglyceride levels remained essentially unchanged during treatment. We conclude that, similar to chenodeoxycholic acid therapy, ursodeoxycholic acid treatment results in unsaturation of fasting hepatic bile. In contrast to the changes seen during chenodeoxycholic acid feeding, however, the unsaturation of hepatic bile during ursodeoxycholic acid treatment is not primarily related to a decreased hepatic HMG CoA reductase activity. Furthermore, while chenodeoxycholic acid tends to increase plasma LDL levels, such changes are not seen during ursodeoxycholic acid treatment.  相似文献   

18.
We have undertaken a detailed examination of changes associated with aging in lipid composition and corresponding physical properties of hindlimb skeletal sarcoplasmic reticulum (SR) membranes isolated from young (5 months), middle-aged (16 months), and old (28 months) Fischer strain 344 rats. Silica gel HPLC chromatography was used to separate phospholipid headgroup species. Subsequent reversed-phase HPLC was used to resolve fatty acid chain compositions of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol species. For all three phospholipid pools, significant age-related variations are observed in the abundance of multiple molecular species, particularly those having polyunsaturated fatty acid chains. Using mass spectrometry (fast atom bombardment and tandem techniques) to distinguish ester- from ether-linked phosphatidylethanolamine species, we demonstrate that overall plasmenylethanolamine content is substantially increased with age, from 48 mol% to 62 mol%. A substantial increase is also observed in the single molecular species 18:0-20:4 phosphatidylinositol suggesting implications for signalling pathways. In addition, associated with senescence we find a significant increase in the rigidifying lipid, cholesterol. Despite these changes in lipid composition of different aged animals, the average bilayer fluidity examined at several bilayer depths with stearic acid spin labels, is not altered. Neither do we find differences in the rotational mobility of maleimide spin-labeled Ca(2+)-ATPase, as determined from saturation-transfer electron paramagnetic resonance, which is sensitive to both the fluidity of lipids directly associated with the Ca(2+)-ATPase and to its association with proteins.  相似文献   

19.
Most of the plasma membrane vesicles formed upon homogenization of plant tissue have a right-side-out (cytoplasmic side-in) orientation. Subsequent purification of plasma membrane vesicles using aqueous two-phase partitioning leads to a further enrichment in right-side-out vesicles resulting in preparations with 80-90% of the vesicles in this orientation. Thus, to be able to assay, e.g. the ion-pumping activities of the H(+)-ATPase and the Ca(2+)-ATPase, which expose their active sites towards the cytoplasm, the vesicles have to be inverted. This is very efficiently achieved by including 0.05% of the detergent Brij 58 (C16E20) in the assay medium, which produces 100% sealed, inside-out (cytoplasmic side-out) vesicles from preparations of 80-90% right-side-out vesicles. This was shown by assaying ATP-dependent H+ pumping using the delta pH probe acridine orange and dissipating the H+ gradient with nigericin, and by assaying ATP-dependent Ca2+ transport using 45Ca2+ and dissipating the Ca2+ gradient with the ionophore A23187. The presence of intact vesicles was confirmed by electronmicroscopy. The detergent Brij 58 is a polyoxyethylene acyl ether and a survey among some other members of this series revealed that those with a head group of relatively large size (E20-23) showed this 'non-detergent behavior', whereas those with smaller head groups (E8-10) behaved as normal detergents and permeabilized the membranes. Thus, a very convenient system for studies on ion-pumping activities and other vectorial properties of the plasma membrane is obtained by simply including the detergent Brij 58 in the assay medium.  相似文献   

20.
Fertilization in the sea urchin is mediated by the membrane-associated acrosomal protein bindin, which plays a key role in the adhesion and fusion between sperm and egg. We have investigated the structure/function relationship of an 18-amino acid peptide fragment "B18," which represents the minimal membrane binding motif of the protein and resembles a putative fusion peptide. The peptide was found to mimic the behavior of its parent protein bindin with respect to (a) its high affinity for lipid bilayers, (b) the ability to aggregate and fuse vesicles, (c) the binding of Zn2+ by a histidine-rich motif, (d) the tendency to self-assemble, and (e), as indicated earlier, the adhesion to cell surface polysaccharides. Fluorescence and light scattering assays were used here to monitor peptide-induced lipid mixing, leakage, and aggregation of large unilamellar sphingomyelin/cholesterol vesicles. For these activities, B18 requires the presence of Zn2+ ions, with which it forms oligomeric complexes and assumes a partially alpha-helical conformation, as observed by circular dichroism. We conclude that aggregation and fusion involves a "trans-complex" between peptides on apposing vesicles that are connected by Zn2+ bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号