首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low cycle fatigue (LCF) behaviour of the near α titanium alloy, Ti-6Al-5Zr-0.5Mo-0.25Si (LT26A), was investigated in the (a + β) as well as β treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of Δεt/2: from ±0.60% to ±1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin-Manson (C-M) relationship in both the treated conditions.  相似文献   

2.
Abstract

The present paper investigates completely reversed room temperature low cycle fatigue (LCF) behaviour of solution annealed austenitic stainless steel AISI 316L with two different grain sizes of 90 and 139 μm developed by solution annealing treatment at 1050 and 1150°C respectively and at six strain amplitudes ranging between ± 0·375 and ± 1·00%. Complete cyclic hardening has been observed for both the grain sizes. While fine grained steel shows an improvement in cyclic life compared with that of coarse grained steel for strain amplitudes ± 0·375 and ± 0·50%, and perfectly follows the Coffin–Manson (C–M) behaviour within the experimental domain, higher cyclic life with bilinear C–M behaviour is observed in the case of coarse grained steel at ± 0·625% strain amplitude and above. Optical microscopy of fatigue fracture surfaces reveals the formation of martensite on cyclic straining predominantly at higher strain amplitudes.  相似文献   

3.
The low-cyclic fatigue (LCF) behaviour of an AA2139 alloy belonging to the Al–Cu–Mg–Ag system was investigated under T6 and T840 conditions. The T840 treatment involves cold rolling with a 40% reduction prior to ageing, and this was effective in increasing the tensile strength of the alloy. Under cyclic loading at total strain amplitudes (εac) of ±0.4 to ±1.0%, the mechanical behaviour is defined as the prevalence of elastic over plastic deformation processes under both the T6/T840 conditions. The initial weak hardening during one to two cycles of loading at εac?>?0.55% and an insignificant softening upon following the cyclic loading to fracture was observed for the T6/T840 conditions. The LCF behaviour of the alloy under the T6/T840 conditions is described by the Basquin–Manson–Coffin relationship.

This paper is part of a Themed Issue on Aluminium-based materials: processing, microstructure, properties, and recycling.  相似文献   

4.
Abstract

In the present investigation, effect of thermal ageing on low cycle fatigue (LCF) behaviour of Reduced Activation Ferritic Martensitic steel has been assessed by finite element analysis. The steel was thermally aged at 873 K for 3000 hour. Low cycle fatigue tests were carried out on both the as-received and thermally aged material at strain rate of 3×10?3 s?1 at 823 K, over strain amplitudes in the range of ± 0.25 to ± 0.8%. Continuous cyclic softening till final failure, except for initial few cycles especially at relatively lower strain amplitudes, was observed in both the material conditions. Thermal ageing resulted in marginally higher cyclic stress response accompanied by lower fatigue life. The differences in fatigue responses have been attributed to the coarsening of precipitates on thermal ageing. Finite element analysis has been carried out considering combined isotropic and kinematic hardening as material model to estimate the effect of thermal ageing on the response of material under LCF loading. Thermal ageing was found to decrease both the isotropic and kinematic hardening with appreciable effect on isotropic hardening. The predicted cyclic stress response and hysteresis loops were found to be in good agreement with the experimental data. The LCF life of the steel has been estimated based on the hysteresis energy approach.  相似文献   

5.
Low cycle fatigue behavior and failure mechanism of a dual-phase steel was investigated by using LCF tests, interrupted LCF tests, SEM, TEM and XRD peak broadening. LCF tests were performed at constant strain amplitudes of ±0.002, ±0.004, ±0.006 and ±0.1. Microscopic investigations were carried out on gauge surfaces of the interrupted LCF specimens at various stages of their fatigue life. It was observed that at high strain amplitudes damage was started at fractured martensite particles and passed through areas with high density of martensite. At low strain amplitudes damage was started at separated ferrite/martensite interface and passed through areas with low density of martensite. All specimens showed fatigue hardening during LCF tests. It was also observed that the rate of hardening was affected by strain amplitude. The results show that XRD peak broadening is sensitive to the strain amplitude and the stage of damage in the specimens.  相似文献   

6.
The low-cycle fatigue (LCF) properties and post-fatigue microstructure of a Fe–15Mn–10Cr–8Ni–4Si austenitic alloy were investigated under an axial strain control mode with total strain amplitudes, Δεt/2, ranging from 2.5 × 10−3 to 2 × 10−2. The fatigue resistance of the alloy was described by Coffin–Manson’s and Basquin’s relationships, and the corresponding fatigue parameters were evaluated. In addition, the Masing behavior, which is associated with a constant deformation mode during fatigue, was revealed at the examined strain amplitudes. Microstructural observations of the fatigue fractured samples showed that the strain induced ε-martensitic transformation accompanied by a planar slip of the Shockley partial dislocations in the austenite is the main deformation mode controlling the fatigue behavior of the studied alloy at Δεt/2 < 2 × 10−2. However, at Δεt/2 = 2 × 10−2, the formation of a cell structure was found in the austenite in addition to ε-martensitic transformation. The LCF resistance of the alloy was compared with conventional Cr–Ni austenitic stainless steels, ferrous base TRIP and TWIP steels and low yield point damping steels. It was found that at the studied strain amplitudes the alloy possessed a higher LCF resistance compared to conventional Fe-base alloys and steels. Remarkably, the fatigue ductility coefficient, εf′, of the studied alloy is 1.3–6 times higher than that of the stainless steels because of a cyclic deformation-induced ε-martensitic transformation. The results showed that the ε-martensitic transformation that occurred in the studied alloy during LCF is the main reason for the improved LCF resistance.  相似文献   

7.
Low-cycle fatigue (LCF) tests are carried out on TP347H stainless steel at a strain rate of 8 × 10−3 s−1 with total strain amplitudes (Δεt/2) of ±0.4% and ±1.0%, at room temperature (RT) and 550 °C. It is found that the stress responses and dislocation structures under cyclic loading strongly depend on the value of strain amplitude at 550 °C. Compared with those at the same strain amplitude at RT, the material shows a rapid strain softening, and finally attains a stabilized state at Δεt/2 = ±0.4% and 550 °C, but the one presents an anomalous behavior, i.e., first a rapid hardening to the maximum stress, followed by a reducing softening at Δεt/2 = ±1.0% and 550 °C. More cells resulting from dislocation cross-slip and planar structures due to dynamic strain ageing (DSA) restricting cross-slip develop at low strain amplitude of ±0.4% at the first cycle. However, there are more complicated dislocation structures, such as cells, elongated cells, walls/channels and planar structures at Δεt/2 = ±1.0%. The observations of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) exclude the effects of martensitic transformation, creep, oxidation, and precipitations on these stress responses and microstructure evolutions, which result from DSA appearing at 550 °C.  相似文献   

8.
Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.  相似文献   

9.
W. González-Manteiga  R. Cao 《TEST》1993,2(1-2):161-188
Summary Given the modelY i =m i )+ɛi,whereE(ɛ i) =0,X i Ci=1, ...,n, andC is ap-dimensional compact set, we have designed a new method for testing the hypothesis that the regression function follows a general linear model,m(·) ∈ {m θ(·) =A t (·)θ}θ∈Θ⊂ℛq , withA a function from p to q. The statistic, denoted ΔASE, used fortesting the given hypothesis is defined to be the difference between the average squared errors (ASE) associated with the non-parametric estimator ofm and the minimum distance parametric estimator ofm. The asymptotic normality of both ΔASE and the minimum distance estimators is proved under general conditions. Alternative bootstrap versions of ΔASE are also considered.  相似文献   

10.
The results of non-isothermal crystallization studies performed at different heating rates on batches of As2Se3 glasses prepared from melts at 400°C, 600°C and 800°C are reported. The peak temperature of crystallizationT p, the enthalpy of crystallization ΔH c and the activation energy for crystallizationE c are independent of the melt temperature used in the preparation. Bulk nucleation with three-dimensional growth of crystals is indicated for As2Se3. The values of ΔH c andE c are found to be respectively 23·3 ± 0·9 cal/g and 36·5 ± 0·9 kcal/mol for As2Se3.  相似文献   

11.
Fatigue crack growth (FCG) behaviour in both near-threshold and higher stress intensity range (ΔK) in intercritically annealed dual-phase (DP) steel containing martensite between 32% and 76% in ferrite has been studied in 3·5% NaCl solution. It is shown that the amount of martensite content in dual phase steel has a significant effect on threshold (ΔK th) values and FCG rates. Higher content of martensite in ferrite leads to higher threshold values and lower FCG rates. Further, ΔK th is much higher in 3·5% NaCl solution as compared to that in laboratory air. Fractography studies reveal that in the near-threshold region, fracture surfaces are characterized mainly by intergranular cracking in corrosive (3·5% NaCl solution) environment. Higher threshold values in 3·5% NaCl solution is attributed to the higher crack closure induced by rougher fracture surface and by the strong wedge effects of corrosion products.  相似文献   

12.
The fatigue-creep interaction performance of Incoloy 825 nickel-based superalloy at 650 °C was investigated through introducing the tensile, compressive, and tensile-compressive strain hold time at the controlled total strain amplitude Δϵt = 0.3 %∼0.7 %. The results show that the Incoloy 825 nickel-based superalloy exhibits the cyclic hardening behavior, the cyclic hardening behavior followed by cyclic softening behavior and the cyclic hardening behavior followed by cyclic stability during the cyclic deformation with tensile strain hold time, while the alloy exhibits the cyclic hardening behavior and the cyclic hardening behavior followed by the cyclic stability during the cyclic deformation with compressive and tensile-compressive strain hold time. The relationship between both plastic and elastic strain amplitudes with reversals to failure for the alloy shows a single slope linear behavior, which can be described by the Coffin-Manson and Basquin equations, respectively. The deformation mechanism of the alloy under three loading condition of fatigue-creep interaction is mainly the planar slip. In addition, under three loading condition of fatigue-creep interaction, the cracks initiate and propagate in the transgranular mode.  相似文献   

13.
The objective of this study is to investigate the effects of mean stress and ageing treatment on the low‐cycle fatigue (LCF) behaviour of a precipitation‐hardening martensitic stainless steel (PHMSS). Uniaxial LCF tests were conducted under strain control with three strain ratios, R = ?1, 0 and 0.5 on specimens heat‐treated to three different tempers, i.e. solution‐annealed (SA), peak‐aged (H900) and overaged (H1150) conditions. Experimental results indicated that under a strain ratio of R = ?1, specimens in H900 temper exhibited longer LCF lifetimes than those in SA and H1150 tempers. However, this advantage for H900 over SA and H1150 tempers disappeared at higher strain ratios (R = 0 and 0.5) due to the greater sensitivity to mean stress effects in H900 temper. For a given temper at high strain amplitudes, the LCF lifetimes under the three applied strain ratios did not show significant differences as a result of the mean stress relaxation effect. However, at low strain amplitudes, cyclic loading at R = ?1 generated longer LCF lifetimes in comparison to R = 0 and 0.5 due to the absence of detrimental tensile mean stress. LCF lifetime data obtained for the given PHMSSs under various combinations of strain ratio and heat treatment were well correlated with a strength‐normalized Smith–Watson–Topper (SWT) parameter in a log–log linear model.  相似文献   

14.
In the present paper, thermo-mechanical fatigue (TMF) and low cycle fatigue (LCF) or isothermal fatigue (IF) lifetimes of a cast magnesium alloy (the AZ91 alloy) were studied. In addition to a heat treatment process (T6), several rare elements were added to the alloy to improve the material strength in the first step. Then, the cyclic behavior of the AZ91 was investigated. For this objective, strain-controlled tension–compression fatigue tests were carried out. The temperature varied between 50 and 200 °C in the out-of-phase (OP) TMF tests. The constraint factor which was defined as the ratio of the mechanical strain to the thermal strain, was set to 75%, 100% and 125%. For LCF tests, mechanical strain amplitudes of 0.20%, 0.25% and 0.30% were considered at constant temperatures of 25 and 200 °C. Experimental fatigue results showed that the cyclic hardening behavior occurred at the room temperature in the AZ91 alloy. At higher temperatures, this alloy had a brittle fracture. But also, it was not significantly clear that the cyclic hardening or the cyclic softening behavior would be occurred in the material. Then, the high temperature LCF lifetime was more than that at the room temperature. The OP-TMF lifetime was the least value in comparison to that of LCF tests. At the end of this article, two energy-based models were applied to predict the fatigue lifetime of this magnesium alloy.  相似文献   

15.
ABSTRACT

The influence of minor Sc addition on the low-cycle fatigue (LCF) properties of hot-extruded Al-Zn-Mg-Cu-Zr alloy with T6 state was investigated through performing the LCF tests at room temperature and air environment. The results indicate that two alloys show cyclic stabilisation, cyclic hardening and cyclic softening during fatigue deformation. The addition of Sc can significantly enhance the cyclic stress amplitude of the alloy. Al-Zn-Mg-Cu-Zr-Sc alloy shows higher fatigue lives at lower strain amplitudes, while has lower fatigue lives at higher strain amplitudes. For the two alloys, the density and movability of dislocations are related to the change of cyclic stress amplitudes. The existence of Al3(Sc,Zr) phase can inhibit the appearance of cyclic softening phenomenon in the Al-Zn-Mg-Cu-Zr-Sc alloy.  相似文献   

16.
Abstract

Low cycle fatigue (LCF) resistance data from binary Al–Li, ternary Al–Li–Cu, and quaternary Al–Li–Cu–Mg alloys have been compiled and discussed. The LCF resistance is measured in terms of the variation of the number of reversals to failure 2N fwith the plastic strain amplitude Δ? p /2 as well as a modified average plastic strain energy per cycle (ΔW p )modified , obtained at different applied total strain amplitudes (Δ? t /2). The data show the effects of microstructural features, namely dominant strengthening precipitates and the degree of recrystallisation as well as crystallographic texture. Lithium content, when in excess of 2·5 wt-%in aluminium decreases the low cycle fatigue resistance the most. The degree of aging, the degree of recrystallisation, and the degree of texture also influence the LCF resistance; among which the effect of the degree of aging is the most pronounced. The effects of lithium content in aluminium solid solution and strengthening precipitates obtainable by the change in the Li/Cu ratio are found to be marginal. Based on a modified total cyclic plastic strain energy till fracture, it is shown that most of the Al–Li alloys exhibit degradation in their LCF resistance in both hypotransition (higher fatigue lives) and hypertransition (lower fatigue lives) regions. Such degradation is attributed to the combined effects of mechanical fatigue, strain localisation through dislocation–precipitate interaction, environmental effects, and finally strain localisation through the high angle grain boundaries. In comparison with the currently used 2XXX and 7XXX series aluminium alloys, Al–Li alloys require substantial improvement before they can be considered for fatigue critical applications.  相似文献   

17.
Some Characteristic behavior of the T * ɛ (Atluri, Nishioka and Nakagaki (1984)) is identified in this paper through an extensive numerical study. T * ɛ is a near tip contour integral and has been known to measure the magnitude of singular deformation field at crack tip for arbitrary material models. In this paper, T * ɛ is found to behave quite differently for different choices of near tip integral contours. If the integral contour moves with advancing crack tip (moving contour), then T * ɛ measures primarily the energy release rate at the crack tip. It is very small for metallic materials, and tends to zero in the limit as Δa→0 for low hardening materials. Thus, T * ɛ evaluated on a moving contour tends to zero as ɛ→0 and Δa→0, for low hardening materials. If the integral contour elongates as crack extends (elongating contour), then T * ɛ measures total energy inside the volume enclosed by Γɛ [i.e., the energy dissipated in the extending wake] plus the energy release at the crack tip. Furthermore, the difference in the behavior of CTOA and T * ɛ, when the applied load is slightly perturbed, is identified. The CTOA is found to be quite insensitive to applied load change. T * ɛ is found to be roughly proportional to the square of the applied load. The functional shape of T * ɛ in terms of the size ɛ of integral contour (for the elongating contour case), is identified, using the crack tip asymptotic formula of Rice (1982). Also, the behaviors of CTOA and T * ɛ are discussed from the view point of Rice's asymptotic solution. It is recommended that as a crack tip parameter for ductile materials, T * ɛ with elongating path be used. CTOA is sometimes not very sensitive to the applied load change, therefore it may create some numerical problems in application phase crack propagation analysis.  相似文献   

18.
The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of Cr–Mo–V low alloy steel which was used for forged railway brake discs was studied. Tensile strength and LCF properties were examined over a range from room temperature (RT) to 600 °C using specimens cut from circumferential direction of a forged disk. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior and behaves Masing type, especially at higher strain amplitudes. At higher than 600 °C, carbide particles aggregated and a decarburized layer developed near the specimen surface. Micro voids distribute within the depth of 50 μm from the specimen surface could coalesce with fatigue cracks. Multiple crack initiation sites were observed on the fracture surface. The oxide film that generated at 600 °C covered the fatigue striations and accelerated the crack propagation. Final fracture area with bigger and deeper dimples showed better ductility at higher temperature. The investigated LCF behavior can provide reference for brake disc life assessment and fracture mechanisms analysis.  相似文献   

19.
Ferroelectromagnetic composites with compositions, X Ni0·5Zn0·5Fe1·95O4−δ + (1 − X) Ba0·8Pb0·2TiO3, in which X varies as 0, 0·005, 0·010, 0·015, 0·020, 0·040, 0·060, 0·080 and 1 in mole %, were prepared by conventional ceramic double sintering process. The presence of two phases was confirmed by X-ray diffraction. The temperature variation of dielectric constant, ɛ′, dielectric loss, tan δ, d.c. conductivity, a.c. conductivity, elastic and anelastic behaviour of ferrite-ferroelectric composites were studied in the temperature range 30–350°C. The a.c. conductivity measurements on these composites in the frequency range 100 Hz-1 MHz at room temperature reveal that the conduction mechanism is due to small polaron hopping. The dielectric and elastic data were discussed in the light of phase transitions.  相似文献   

20.
The strain versus fatigue life and fracture behavior of spray-formed Al–Si composites reinforced with SiC particles of two different sizes were studied under total strain amplitudes. Both composites exhibit short low-cycle fatigue (LCF) which follows a Coffin-Manson relationship, and display cyclic hardening at all strain amplitudes. The LCF endurance of the composite with large particles is higher than that of composite containing small particles in the high strain amplitudes, however, at low strains the difference in fatigue endurance between the two composites decreased. Moreover, the decrease in particle size results in a higher degree of hardening at low and middle strains, but reduces the magnitude of hardening at highest strain. Fractographic analysis reveals that particle/matrix debonding is the main mechanism of failure in composite with small particles, while fracture and debonding of SiC particle are predominant in the large particle reinforced composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号