首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pyridoxal form of alanine racemase of Bacillus stearothermophilus was converted to the pyridoxamine form by incubation with its natural substrate, D- or L-alanine, under acidic conditions: the enzyme loses its racemase activity concomitantly. The pyridoxamine form of the enzyme returned to the pyridoxal form by incubation with pyruvate at alkaline pH. Thus, alanine racemase catalyzes transamination as a side function. In fact, the apo-form of the enzyme abstracted tritium from [4'-3H]pyridoxamine in the presence of pyruvate. A mutant enzyme containing alanine substituted for Lys39, whose epsilon-amino group forms a Schiff base with the C4' aldehyde of pyridoxal 5'-phosphate in the wild-type enzyme, was inactive as a catalyst for racemization as well as transamination. However, when methylamine was added to the mutant enzyme, it became active in both reactions. These results suggest that the epsilon-amino group of Lys39 participates in both racemization and transamination when catalyzed by the wild-type enzyme.  相似文献   

2.
Cysteine 111 in Dopa decarboxylase (DDC) has been replaced by alanine or serine by site-directed mutagenesis. Compared to the wild-type enzyme, the resultant C111A and C111S mutant enzymes exhibit Kcat values of about 50% and 15%, respectively, at pH 6.8, while the K(m) values remain relatively unaltered for L-3,4-dihydroxyphenylalanine (L-Dopa) and L-5-hydroxytryptophan (L-5-HTP). While a significant decrease of the 280 nm optically active band present in the wild type is observed in mutant DDCs, their visible co-enzyme absorption and CD spectra are similar to those of the wild type. With respect to the wild type, the Cys-111-->Ala mutant displays a reduced affinity for pyridoxal 5'-phosphate (PLP), slower kinetics of reconstitution to holoenzyme, a decreased ability to anchor the external aldimine formed between D-Dopa and the bound co-enzyme, and a decreased efficiency of energy transfer between tryptophan residue(s) and reduced PLP. Values of pKa and pKb for the groups involved in catalysis were determined for the wild-type and the C111A mutant enzymes. The mutant showed a decrease in both pK values by about 1 pH unit, resulting in a shift of the pH of the maximum velocity from 7.2 (wild-type) to 6.2 (mutant). This change in maximum velocity is mirrored by a similar shift in the spectrophotometrically determined pK value of the 420-->390 nm transition of the external aldimine. These results demonstrate that the sulfhydryl group of Cys-111 is catalytically nonessential and provide strong support for previous suggestion that this residue is located at or near the PLP binding site (Dominici P, Maras B, Mei G, Borri Voltattorni C. 1991. Eur J Biochem 201:393-397). Moreover, our findings provide evidence that Cys-111 has a structural role in PLP binding and suggest that this residue is required for maintenance of proper active-site conformation.  相似文献   

3.
If the pyridoxal-phosphate-binding lysine residue 258 of aspartate aminotransferase is exchanged for a histidine residue, the enzyme retains partial catalytic competence [Ziak, M., Jaussi, R., Gehring, H. and Christen, P. (1990) Eur. J. Biochem. 187, 329-333]. The three-dimensional structures of the mutant enzymes of both chicken mitochondria and Escherichia coli were determined at high resolution. The folding patterns of the polypeptide chains proved to be identical to those of the wild-type enzymes, small conformational differences being restricted to parts of the active site. If aspartate or glutamate was added to the pyridoxal form of the mutant enzyme [lambda max 392 nm and 330 nm (weak); negative CD at 420 nm, positive CD at 370 nm and 330 nm], the external aldimine (lambda max = 430 nm; negative CD at 360 nm and 430 nm) transiently accumulated. Upon addition of 2-oxoglutarate to the pyridoxamine form (lambda max 330 nm, positive CD), a putative ketamine intermediate could be detected; however, with oxalacetate, an equilibrium between external aldimine and the pyridoxal form, which was strongly in favour of the former, was established within seconds. The transamination cycle with glutamate and oxalacetate proceeds only three orders of magnitude more slowly than the overall reaction of the wild-type enzyme. The specific activity of the mutant enzyme is 0.1 U/mg at 25 degrees C and constant from pH 6.0 to 8.5. Reconstitution of the mutant apoenzyme with [4'-3H]pyridoxamine 5'-phosphate resulted in rapid release of 3H with a first-order rate constant kappa' = 5 x 10(-4) s-1 similar to that of the wild-type enzyme. Apparently, in aspartate aminotransferase, histidine can to some extent substitute for the active-site lysine residue. The imidazole ring of H258, however, seems too distant from C alpha and C4' to act efficiently as proton donor/acceptor in the aldimine-ketamine tautomerization, suggesting that the prototropic shift might be mediated by an intervening water molecule. Transmination of the internal to the external aldimine apparently can be replaced by de novo formation of the latter, and by its hydrolysis in the reverse direction.  相似文献   

4.
Previous studies have demonstrated that the in vitro folding pathway of Escherichia coli serine hydroxymethyltransferase has both monomer and dimer intermediates that are stable for periods of minutes to hours at 4 degrees C (Cai K., Schirch, D., and Schirch, V. (1995) J. Biol. Chem. 270, 19294-19299). Single Trp mutant enzymes were constructed and used in combination with other methods to show that on the folding pathway of this enzyme two domains rapidly fold to form a monomer in which the amino-terminal 55 amino acid residues and a segment around the active site region of Lys229 remain in a largely disordered form. This partially folded enzyme can form dimers and slowly undergoes a rate-determining conformational change in which the unstructured segments assume their native state (Cai, K. , and Schirch, V. (1996) J. Biol. Chem. 271, 2987-2994). To further assess the kinetics and structural details of the intermediates during folding, fluorescence energy transfer and fluorescence anisotropy measurements were made of the three Trp residues and pyridoxal 5'-phosphate, attached covalently to the active site by reduction to a secondary amine by sodium cyanoborohydride. These studies confirmed that the basic kinetic folding pathway remained the same in the reduced enzyme as compared to the earlier studies with the apoenzyme. Both equilibrium and kinetic intermediates were identified and their structural characteristics determined. The results show that the active site Lys229-bound pyridoxyl 5'-phosphate remains more than 50 angstroms from any Trp residues until the final rate-determining conformational change when it approaches each Trp residue at the same rate. The environment of each Trp residue and the pyridoxyl phosphate in both an equilibrium folding intermediate and a kinetic folding intermediate are described.  相似文献   

5.
The lysine residue binding with the cofactor pyridoxal 5'-phosphate (PLP) plays an important role in catalysis, such as in the transaldimination and abstraction of alpha-hydrogen from a substrate amino acid in PLP-dependent enzymes. We studied the role of Lys39 of alanine racemase (EC 5.1.1.1) from Bacillus stearothermophilus, the PLP-binding residue of the enzyme, by replacing it site-specifically with alanine and characterizing the resultant K39A mutant enzyme. The mutant enzyme turned out to be inherently inactive, but gained an activity as high as about 0.1% of that of the wild-type enzyme upon addition of 0.2 M methylamine. The amine-assisted activity of the mutant enzyme depended on the pKa values and molecular volumes of the alkylamines used. A strong kinetic isotope effect was observed when alpha-deuterated D-alanine was used as a substrate in the methylamine-assisted reaction, but little effect was observed using its antipode. In marked contrast, only L-enantiomer of alanine showed a solvent isotope effect in deuterium oxide in the methylamine-assisted reaction. These results suggest that methylamine serves as a base not only to abstract the alpha-hydrogen from D-alanine but also to transfer a proton from water to the alpha-position of the deprotonated (achiral) intermediate to form D-alanine. Therefore, the exogenous amine can be regarded as a functional group fully representing Lys39 of the wild-type enzyme. Lys39 of the wild-type enzyme probably acts as the base catalyst specific to the D-enantiomer of alanine. Another residue specific to the L-enantiomer in the wild-type enzyme is kept intact in the K39A mutant.  相似文献   

6.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthetic pathway of animals, fungi and some bacteria. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. In mouse erythroid 5-aminolevulinate synthase, lysine 313 has been identified as the residue involved in the Schiff base linkage with pyridoxal 5'-phosphate [Ferreira, G. C., et al. (1993) Protein Sci. 2, 1959-1965], while arginine 149, a conserved residue among all known 5-aminolevulinate synthase sequences, is essential for function [Gong & Ferreira (1995) Biochemistry 34, 1678-1685]. To determine whether each subunit contains an independent active site (i.e., intrasubunit arrangement) or whether the active site resides at the subunit interface (i.e., intersubunit arrangement), in vivo complementation studies were used to generate heterodimers from site-directed, catalytically inactive mouse 5-aminolevulinate synthase mutants. When R149A and K313A mutants were co-expressed in a hem A- Escherichia coli strain, which can only grow in the presence of 5-aminolevulinate or when it is transformed with an active 5-aminolevulinate synthase expression plasmid, the hem A- E. coli strain acquired heme prototrophy. The purified K313A/R149A heterodimer mixture exhibited K(m) values for the substrates similar to those of the wild-type enzyme and approximately 26% of the wild-type enzyme activity which is in agreement with the expected 25% value for the K313A/R149A coexpression system. In addition, DNA sequencing of four Saccharomyces cerevisiae 5-aminolevulinate synthase mutants, which lack ALAS activity but exhibit enzymatic complementation, revealed that mutant G101 with mutations N157Y and N162S can complement mutant G220 with mutation T452R, and mutant G205 with mutation C145R can complement mutant Ole3 with mutation G344C. Taken together, these results provide conclusive evidence that the 5-aminolevulinate synthase active site is located at the subunit interface and contains catalytically essential residues from the two subunits.  相似文献   

7.
5-Aminolevulinate synthase (EC 2.3.1.37) catalyzes the first reaction in the heme biosynthetic pathway in nonplant eukaryotes and some prokaryotes. Homology sequence modeling between 5-aminolevulinate synthase and some other alpha-family pyridoxal 5'-phosphate-dependent enzymes indicated that the residue corresponding to the Arg-439 of murine erythroid 5-aminolevulinate synthase is a conserved residue in this family of pyridoxal 5'-phosphate-dependent enzymes. Further, this conserved arginine residue in several enzymes, e.g., aspartate aminotransferase, for which the three-dimensional structure is known, has been shown to interact with the substrate carboxyl group. To test whether Arg-439 is involved in substrate binding in murine erythroid 5-aminolevulinate synthase, Arg-439 and Arg-433 of murine erythroid 5-aminolevulinate synthase were each replaced by Lys and Leu using site-directed mutagenesis. The R439K mutant retained 77% of the wild-type activity; its K(m) values for both substrates increased 9-13-fold, while the activity of R433K increased 2-fold and the K(m) values for both substrates remained unchanged. R439L had no measurable activity as determined using a standard 5-aminolevulinate synthase enzyme-coupled activity assay. In contrast, the kinetic parameters for R433L were comparable to those of the wild-type. Dissociation constants (Kd) for glycine increased 5-fold for R439K and at least 30-fold for R439L, while Kd values for glycine for both R433K and R433L mutants were similar to those of the wild-type. However, there was not much difference in methylamine binding among the mutants and the wild-type, excepting of a 10-fold increase in K(d)methylamine for R439L. R439K proved much less thermostable than the wild-type enzyme, with the thermotransition temperature, T1/2, determined to be 8.3 degrees C lower than that of the wild-type enzyme. In addition, in vivo complementation analysis demonstrated that in the active site of murine erythroid 5-aminolevulinate synthase, R439 is contributed from the same subunit as K313 (which is involved in the Schiff base linkage of the pyridoxal 5'-phosphate cofactor) and D279 (which interacts electrostatically with the ring nitrogen of the cofactor), while another subunit provides R149. Taken together, these findings suggest that Arg-439 plays an important role in substrate binding of murine erythroid 5-aminolevulinate synthase.  相似文献   

8.
The cyanide-ligated form of the baker's yeast cytochrome c peroxidase mutant bearing the mutation Asn82-->Ala82 ([N82A]CcPCN) has been studied by proton NMR spectroscopy. This mutation alters an amino acid that forms a hydrogen bond to His52, the distal histidine residue that interacts in the heme pocket with heme-bound ligands. His52 is a residue critical to cytochrome c peroxidase's normal function. Proton hyperfine resonance assignments have been made for the cyanide-ligated form of the mutant by comparison with 1-D and NOESY spectra of the wild-type native enzyme. For [N82A]CcPCN, proton NMR spectra reveal two significant phenomena. First, similar to results published for the related mutant [N82D]CcPCN [Satterlee, J. D., et al. (1994) Eur. J. Biochem. 244, 81-87], for Ala82 mutation disrupts the hydrogen bond between His52 and the heme-ligated CN. Second, four of the 24 resolved hyperfine-shifted resonances are doubled in the mutant enzyme's proton spectrum, leading to the concept that the heme active site environment is dynamically microheterogeneous on a very localized scale. Two magnetically inequivalent enzyme forms are detected in a pure enzyme preparation. Varying temperature causes the two enzyme forms to interconvert. Magnetization transfer experiments further document this interconversion between enzyme forms and have been used to determine that the rate of interconversion is 250 (+/- 53) s-1. The equilibrium constant at 20 degrees C is 1.5. Equilibrium constants have been calculated at various temperatures between 5 and 29 degrees C leading to the following values: delta H = 60 kJ mol-1; delta S = 0.20 kJ K-1 mol-1.  相似文献   

9.
Comparisons of the structures of glutamate dehydrogenase (GluDH) and leucine dehydrogenase (LeuDH) have suggested that two substitutions, deep within the amino acid binding pockets of these homologous enzymes, from hydrophilic residues to hydrophobic ones are critical components of their differential substrate specificity. When one of these residues, K89, which hydrogen-bonds to the gamma-carboxyl group of the substrate l-glutamate in GluDH, was altered by site-directed mutagenesis to a leucine residue, the mutant enzyme showed increased substrate activity for methionine and norleucine but negligible activity with either glutamate or leucine. In order to understand the molecular basis of this shift in specificity we have determined the crystal structure of the K89L mutant of GluDH from Clostridium symbiosum. Analysis of the structure suggests that further subtle differences in the binding pocket prevent the mutant from using a branched hydrophobic substrate but permit the straight-chain amino acids to be used as substrates. The three-dimensional crystal structure of the GluDH from C. symbiosum has been previously determined in two distinct forms in the presence and absence of its substrate glutamate. A comparison of these two structures has revealed that the enzyme can adopt different conformations by flexing about the cleft between its two domains, providing a motion which is critical for orienting the partners involved in the hydride transfer reaction. It has previously been proposed that this conformational change is triggered by substrate binding. However, analysis of the K89L mutant shows that it adopts an almost identical conformation with that of the wild-type enzyme in the presence of substrate. Comparison of the mutant structure with both the wild-type open and closed forms has enabled us to separate conformational changes associated with substrate binding and domain motion and suggests that the domain closure may well be a property of the wild-type enzyme even in the absence of substrate.  相似文献   

10.
D-Amino acid transaminase, which catalyzes the synthesis of D-alanine and D-glutamate for the bacterial cell wall, is a candidate for the design of specific inhibitors that could be novel antimicrobial agents. Under the experimental conditions usually employed for enzyme assays, kinetic parameters for its substrates were determined for short incubation periods, when intermediates and products do not accumulate and the enzyme activity is linear with time. Such kinetic analyses indicate that the enzyme accepts most D-amino acids but D-aspartate and D-glutamate are the best substrates. Under a different type of experimental conditions when the enzyme is exposed to D-alanine, intermediates, and products for periods of hours, it slowly becomes inactivated (Martinez del Pozo, A., Yoshimura, T., Bhatia, M. B., Futaki, S., and Manning, J. M. (1992) Biochemistry 31, 6018-6023). We now report that D-aspartate, D-glutamate, and L-alanine also lead to slow inactivation. Methylation or amidation of the alpha-COOH group of D-alanine prevents inactivation, indicating that decarboxylation is required for inactivation; the slow release of CO2 from substrate is demonstrated. The alpha-methyl analog of D-alanine, D-aspartate, and D-glutamate do not lead to inactivation, showing that the alpha-hydrogen of the substrate is required, i.e. that some processing is required. Lys145, which binds pyridoxal 5'-phosphate in the wild-type enzyme, is not involved in the inactivation since two active site mutant enzymes, K145Q and K145N, are also inactivated. Reactivation of the inactive enzyme at acidic pH is accompanied by the release of ammonia corresponding to 1 mol/mol of dimeric enzyme. Competitive inhibitors, amine-containing buffers, and thiols effectively impede the inactivation. This reversal in the roles of substrates and inhibitors, i.e. when a substrate can be an inactivator and an inhibitor can act as a protector, occurs during a time period not usually used to measure steady-state kinetics or initial velocities of enzyme reactions and could have physiological relevance in cells.  相似文献   

11.
Dihydropyrimidine dehydrogenase catalyzes, in the rate-limiting step of the pyrimidine degradation pathway, the NADPH-dependent reduction of uracil and thymine to dihydrouracil and dihydrothymine, respectively. The porcine enzyme is a homodimeric iron-sulfur flavoprotein (2 x 111 kDa). C671, the residue postulated to be in the uracil binding site and to act as the catalytically essential acidic residue of the enzyme oxidative half-reaction, was replaced by an alanyl residue. The mutant enzyme was overproduced in Escherichia coli DH5alpha cells, purified to homogeneity, and characterized in comparison with the wild-type species. An extinction coefficient of 74 mM-1 cm-1 was determined at 450 nm for the wild-type and mutant enzymes. Chemical analyses of the flavin, iron, and acid-labile sulfur content of the enzyme subunits revealed similar stoichiometries for wild-type and C671A dihydropyrimidine dehydrogenases. One FAD and one FMN per enzyme subunit were found. Approximately 16 iron atoms and 16 acid-labile sulfur atoms were found per wild-type and mutant enzyme subunit. The C671A dihydropyrimidine dehydrogenase mutant exhibited approximately 1% of the activity of the wild-type enzyme, thus preventing its steady-state kinetic analysis. Therefore, the ability of the C671A mutant and, for comparison, of the wild-type enzyme species to interact with reaction substrates, products, or their analogues were studied by absorption spectroscopy. Both enzyme forms did not react with sulfite. The wild-type and mutant enzymes were very similar to each other with respect to the spectral changes induced by binding of the reaction product NADP+ or of its nonreducible analogue 3-aminopyridine dinucleotide phosphate. Uracil also induced qualitatively and quantitatively similar absorbance changes in the visible region of the absorbance spectrum of the two enzyme forms. However, the calculated Kd of the enzyme-uracil complex was significantly higher for the C671A mutant (9.1 +/- 0.7 microM) than for the wild-type dihydropyrimidine dehydrogenase (0.7 +/- 0.09 microM). In line with these observations, the two enzyme forms behaved in a similar way when titrated anaerobically with a NADPH solution. Addition of an up to 10-fold excess of NADPH to both dihydropyrimidine dehydrogenase forms led to absorbance changes consistent with reduction of approximately 0.5 flavin per subunit, with no indication of reduction of the enzyme iron-sulfur clusters. Absorbance changes consistent with reduction of both enzyme flavins were obtained by removing NADP+ with a NADPH-regenerating system. On the contrary, the two enzyme species differed significantly with respect to their reactivity with dihydrouracil. Addition of dihydrouracil to the wild-type enzyme species, under anaerobic conditions, led to absorbance changes that could be interpreted to result from both partial flavin reduction and the formation of a complex between the enzyme and (dihydro)uracil. In contrast, only spectral changes consistent with formation of a complex between the oxidized enzyme and dihydrouracil were observed when a C671A mutant enzyme solution was titrated with this compound. Furthermore, enzyme-monitored turnover experiments were carried out anaerobically in the presence of a limiting amount of NADPH and excess uracil with the two enzyme forms in a stopped-flow apparatus. These experiments directly demonstrated that the substitution of an alanyl residue for C671 in dihydropyrimidine dehydrogenase specifically prevents enzyme-catalyzed reduction of uracil. Finally, sequence analysis of dihydropyrimidine dehydrogenase revealed that it exhibits a modular structure; the N-terminal region, similar to the beta subunit of bacterial glutamate synthases, is proposed to be responsible for NADPH binding and oxidation with reduction of the FAD cofactor of dihydropyrimidine dehydrogenase. The central region, similar to the FMN subunit of dihydroorotate dehydrogenases, is likely to harbor the site o  相似文献   

12.
Xanthine dehydrogenase, a molybdenum, iron-sulfur flavoenzyme encoded in the fruit fly Drosophila melanogaster by the rosy gene, has been characterised both from the wild-type and mutant files. Enzyme assays, using a variety of different oxidising and reducing substrates were supplemented by limited molecular characterisation. Four rosy strains showed no detectable activity in any enzyme assay tried, whereas from four wild-type and three rosy mutant strains, those for the [E89K], [L127F] and [L157P]xanthine dehydrogenases (in all of which the mutation is in the iron-sulfur domain), the enzyme molecules, although present at different levels, had extremely similar or identical properties. This was confirmed by purification of one wild-type and one mutant enzyme. [E89K]xanthine dehydrogenase. These both had ultraviolet-visible absorption spectra similar to milk xanthine oxidase. Both were found to be quite stable molecules, showing very high catalytic-centre activities and with little tendency to become degraded by proteolysis or modified by conversion to oxidase or desulfo forms. In three further rosy strains, giving [G353D]xanthine dehydrogenase and [S357F]xanthine dehydrogenase mutated in the flavin domain, and [G1011E]xanthine dehydrogenase mutated in the molybdenum domain, enzyme activities were selectively diminished in certain assays. For the G353D and S357F mutant enzymes activities to NAD+ as oxidising substrate were diminished, to zero for the latter. In addition for [G353D]xanthine dehydrogenase, there was an increase in apparent Km values both for NAD+ and NADH. These findings indicate involvement of this part of the sequence in the NAD(+)-binding site. The G1011E mutation has a profound effect on the enzyme. As isolated and as present in crude extracts of the files, this xanthine dehydrogenase variant lacks activity to xanthine or pterin as reducing substrate, indicating an impairment of the functioning of its molybdenum centre. However, it retains full activity to NADH with dyes as oxidising substrate. Mild oxidation of the enzyme converts it, apparently irreversibly, to a form showing full activity to xanthine and pterin. The nature of the group that is oxidised is discussed in the light of redox potential data. It is proposed that the process involves oxidation of the pterin of the molybdenum cofactor from the tetrahydro to a dihydro oxidation state. This conclusion is fully consistent with recent information [Rom?o, M. J., Archer, M., Moura, I., Moura. J.J.G., LeGall, J., Engh, R., Schneider, M., Hof, P. & Huber, R. (1995) Science 270. 1170-1176) from X-ray crystallography on the structure of a closely related enzyme from Desulfovibrio gigas. It is proposed, that apparent irreversibility of the oxidative activating process for [G1011E]xanthine dehydrogenase, is due to conversion of its pterin to the tricyclic derivative detected by these workers. The data thus provide the strongest evidence available, that the oxidation state of the pterin can have a controlling influence on the activity of a molybdenum cofactor enzyme. Implications regarding pterin incorporation into xanthine dehydrogenase and in relation to other molybdenum enzymes are discussed.  相似文献   

13.
alpha-Hydroxyphosphonates are moderately potent (Ki = 6-600 microM) inhibitors of the enzyme myo-inositol monophosphatase (McLeod et al., Med. Chem. Res. 1992, 2, 96). Hydroxy-[4-(5,6,7,8-tetrahydronaphtyl-1-oxy)phenyl]methyl phosphonate (3) was resynthesized and its inhibitory potency towards the recombinant bovine brain enzyme confirmed (Ki = 20 microM). Similar aromatic difluoro-, keto-, and ketodifluorophosphonates (5, 7, 9) were inactive. Compound 3 was 15-fold less active on the human as compared to the bovine enzyme. Molecular modeling suggested that the hydrophobic part of the inhibitor interacts with amino acid side chains that are located at the interface between the enzyme subunits in an area (amino acids 175-185) with low similarity between the two isozymes. Phe-183 in the human enzyme was replaced with leucine, the corresponding residue in the bovine isoform. The three isozymes (human wild-type, bovine wild-type and human F183L) had similar kinetic properties, except that the bovine enzyme was less effectively inhibited by high concentrations of the activator Mg2+. The F183L mutant enzyme had a twofold increased affinity for compound 3 as compared to the human wild-type form. We conclude that residue 183 contributes to the binding of aromatic hydroxyphosphonates to IMPase, but it is not the only determining factor for inhibitor specificity with respect to different isozymes.  相似文献   

14.
Mutant adenylosuccinate lyases of Bacillus subtilis were prepared by site-directed mutagenesis with replacements for His141, previously identified by affinity labeling as being in the active site [Lee, T. T., Worby, C., Dixon, J. E., and Colman, R. F. (1997) J. Biol. Chem. 272, 458-465]. Four substitutions (A, L, E, Q) yield mutant enzyme with no detectable catalytic activity, while the H141R mutant is about 10(-)5 as active as the wild-type enzyme. Kinetic studies show, for the H141R enzyme, a Km that is only 3 times that of the wild-type enzyme. Minimal activity was also observed for mutant enzymes with replacements for His68 [Lee, T. T., Worby, C., Bao, Z. -Q., Dixon, J. E., and Colman, R. F. (1998) Biochemistry 37, 8481-8489]. Measurement of the reversible binding of radioactive adenylosuccinate by inactive mutant enzymes with substitutions at either position 68 or 141 shows that their affinities for substrate are decreased by only 10-40-fold. These results suggest that His141, like His68, plays an important role in catalysis, but not in substrate binding. Evidence is consistent with the hypothesis that His141 and His68 function, respectively, as the catalytic base and acid. Circular dichroism spectroscopy and gel filtration chromatography conducted on wild-type and all His141 and His68 mutants reveal that none of the mutant enzymes exhibits major structural changes and that all the enzymes are tetramers. Mixing inactive His141 with inactive His68 mutant enzymes leads to striking increases in catalytic activity. This complementation of mutant enzymes indicates that His141 and His68 come from different subunits to form the active site. A tetrameric structure of adenylosuccinate lyase was constructed by homology modeling based on the known structures in the fumarase superfamily, including argininosuccinate lyase, delta-crystallin, fumarase, and aspartase. The model suggests that each active site is constituted by residues from three subunits, and that His141 and His68 come from two different subunits.  相似文献   

15.
The mammalian ubiquitin conjugating enzyme known as E2-25K catalyzes the synthesis of polyubiquitin chains linked exclusively through K48-G76 isopeptide bonds. The properties of truncated and chimeric forms of E2-25K suggest that the polyubiquitin chain synthesis activity of this E2 depends on specific interactions between its conserved 150-residue core domain and its unique 50-residue tail domain [Haldeman, M. T., Xia, G., Kasperek, E. M., and Pickart, C. M. (1997) Biochemistry 36, 10526-10537]. In the present study, we provide strong support for this model by showing that a point mutation in the core domain (S86Y) mimics the effect of deleting the entire tail domain: the ability to form an E2 approximately ubiquitin thiol ester is intact, while conjugation activity is severely inhibited (>/=100-fold reduction in kcat/Km). The properties of E2-25K enzymes carrying the S86Y mutation indicate that this mutation strengthens the interaction between the core and tail domains: both free and ubiquitin-bound forms of S86Y-25K are completely resistant to tryptic cleavage at K164 in the tail domain, whereas wild-type enzyme is rapidly cleaved at this site. Other properties of S86Y-26K suggest that the active site of this mutant enzyme is more occluded than the active site of the wild-type enzyme. (1) Free S86Y-25K is alkylated by iodoacetamide 2-fold more slowly than the wild-type enzyme. (2) In assays of E2 approximately ubiquitin thiol ester formation, S86Y-25K shows a 4-fold reduced affinity for E1. (3) The ubiquitin thiol ester adduct of S86Y-25K undergoes (uncatalyzed) reaction with dithiothreitol 3-fold more slowly than the wild-type thiol ester adduct. One model to accommodate these findings postulates that an enhanced interaction between the core and tail domains, induced by the S86Y mutation, causes a steric blockade at the active site which prevents access of the incoming ubiquitin acceptor to the thiol ester bond. Consistent with this model, the S86Y mutation inhibits ubiquitin transfer to macromolecular acceptors (ubiquitin and polylysine) more strongly than transfer to small-molecule acceptors (free lysine and short peptides). These results suggest that unique residues proximal to E2 active sites may influence specific function by mediating intramolecular interactions.  相似文献   

16.
5-Aminolevulinate synthase (ALAS) catalyzes the first step in the heme biosynthetic pathway in nonplant eukaryotes and some prokaryotes, which is the condensation of glycine with succinyl-coenzyme A to yield coenzyme A, carbon dioxide, and 5-aminolevulinate. ALAS requires pyridoxal 5'-phosphate as an essential cofactor and functions as a homodimer. D279 in murine erythroid enzyme was found to be conserved in all aminolevulinate synthases and appeared to be homologous to D222 in aspartate aminotransferase, where the side chain of the residue stabilizes the protonated form of the cofactor ring nitrogen, thus enhancing the electron sink function of the cofactor during enzyme catalysis. D279A mutation in ALAS resulted in no detectable enzymatic activity under standard assay conditions, and the conservative D279E mutation reduced the catalytic efficiency for succinyl-CoA 30-fold. The D279A mutation resulted in a 19-fold increase in the dissociation constant for binding of the pyridoxal 5'-phosphate cofactor. UV-visible and CD spectroscopic analyses indicated that the D279A mutant binds the cofactor in a different mode at the active site. In contrast to the wild-type and D279E mutant, the D279A mutant failed to catalyze the formation of a quinonoid intermediate upon binding of 5-aminolevulinate. Importantly, this partial reaction could be rescued in D279A by reconstitution of the mutant with the cofactor analogue N-methyl-PLP. The steady-state kinetic isotope effect when deuteroglycine was substituted for glycine was small for the wild-type enzyme (kH/kD = 1.2 +/- 0.1), but a strong isotope effect was observed with the D279E mutant (kH/kD = 7.7 +/- 0.3). pH titration of the external aldimine formed with ALA indicated the D279E mutation increased the apparent pKa for quinonoid formation from 8.10 to 8.25. The results are consistent with the proposal that D279 plays a crucial role in aminolevulinate synthase catalysis by enhancing the electron sink function of the cofactor.  相似文献   

17.
A mutant of Lactobacillus casei dihydrofolate reductase, D26N, in which the active site aspartic acid residue has been replaced by asparagine by oligonucleotide-directed mutagenesis has been studied by NMR and optical spectroscopy and its kinetic behavior characterized in detail. On the basis of comparisons of a large number of chemical shifts and NOEs, it is clear that there are only very slight structural differences between the methotrexate complexes of the wild-type and mutant enzymes and that these are restricted to the immediate environment of the substitution. The data suggest a slight difference in orientation of the pteridine ring in the binding site in the mutant enzyme. Both NMR and UV spectroscopy show that methotrexate is protonated on N1 when bound to the wild-type enzyme but not when bound to the mutant. Binding constant measurements by fluorescence quenching and steady-state kinetic measurements of dihydrofolate (FH2) and folate reduction show that the substitution has little or no effect on substrate, coenzyme, and inhibitor binding (< 7-fold increase in Kd) and only a modest effect on kcat (up to a factor of 9 for FH2 and 25 for folate) and kcat/KM (up to a factor of 13 for FH2 and 14 for folate). Measurements of deuterium isotope effects and direct measurements of hydride ion transfer and product release by stopped-flow methods revealed that for the mutant enzyme hydride ion transfer is rate-limiting across the pH range 5-8. This allowed a direct comparison of the rate of hydride ion transfer in the wild-type and mutant enzymes; the asparagine substitution was found to decrease this rate by 62-fold at pH 5.5 and 9-fold at pH 7.5. This effect is much smaller than that seen for the corresponding mutant of Escherichia coli dihydrofolate reductase [Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., & Kraut, J. (1986) Science 231, 1123-1128], estimated as a 1000-fold decrease in the rate of hydride ion transfer. The change in pH dependence of kcat resulting from the substitution is consistent with, but does not prove, the idea that the group of pK 6.0 which must be protonated for hydride ion transfer to occur is Asp26. For folate reduction, the pH dependence of kcat is determined by two pKs, one of which, pK 5, disappears in the mutant enzyme, suggesting that it may correspond to ionization of Asp26.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Arg-gingipain (RGP) is an Arg-X-specific cysteine proteinase produced by the Gram-negative anaerobe Porphyromonas gingivalis and has been shown to be a potent virulence factor in progressive periodontal disease (Nakayama, K., Kadowaki, T., Okamoto, K., and Yamamoto, K. (1995) J. Biol. Chem. 270, 23619-23626). In this study, we provide evidence that RGP acts as a major processing enzyme for various cell surface and secretory proteins in P. gingivalis. Fimbrilin, a major component of fimbriae, remained in the precursor form in the RGP-null mutant. Prefimbrilin expressed in Escherichia coli was converted to the mature fimbrilin in vitro when incubated with purified RGP, but its conversion was suppressed by potent RGP inhibitors. The results were consistent with the electron microscopic observation indicating little or no fimbriation in the RGP-null mutant. The immunogenic 75-kDa cell surface protein was also shown to retain its proform in the RGP-null mutant. In addition, Lys-gingipain (KGP) was found to be abnormally processed in the RGP-null mutant. In contrast, both prefimbrilin and the 75-kDa protein precursor were processed to their respective mature forms in the KGP-null mutant, suggesting that KGP is not involved in the normal processing mechanisms of these proteins. These results suggest that RGP not only acts as a direct virulence factor but also makes a significant contribution as a major processing enzyme to the virulence of P. gingivalis.  相似文献   

19.
Tryptophanase has an absorption maximum at 338 nm at high pH and 422 nm at low pH. The 422-nm absorption species has been considered to be the catalytically competent ketoenamine form of the Schiff base of pyridoxal 5'-phosphate with a lysine residue. The 338-nm absorption band showed an intense fluorescence band at 390 nm and not around 500 nm, indicating that the 338-nm absorption species is the substituted aldamine rather than an enolimine form of the Schiff base which has been suggested previously. To explore the mechanism of the enzyme that can exert its catalytic ability at high pH where most of its coenzyme exists as the catalytically incompetent aldamine structure, the reaction of tryptophanase with 3-indolepropionate, a substrate analogue that stops the reaction at the step of the Michaelis complex, was studied at various pH values and analogue concentrations. Kinetic analysis was done based on a scheme involving eight forms of the enzyme, i.e., the liganded and unliganded forms of the ketoenamine, the substituted aldamine structures, and their protonated and deprotonated forms. Kinetic parameters were obtained for each interconversion step. The results showed that the binding of 3-indolepropionate to tryptophanase shifts the equilibrium from the substituted aldamine to the ketoenamine structure over the entire pH region studied. This implies that in the reaction of tryptophanase with tryptophan at high pH, where the enzyme shows maximum activity, the binding of the substrate to the enzyme converts the inactive aldamine form of the coenzyme to the active ketoenamine form. Mechanisms for the activation process, in which a nucleophile is expelled from the aldamine either by steric hindrance of the nucleophile with the ligand or by the negative charge of the ligand alpha-carboxylate group that stabilizes the aldimine structure, were discussed.  相似文献   

20.
X-ray crystallography predicts hydrogen-bonding interactions between the side chains of Thr198 and two other amino acid residues, Glu194 (adjacent to the catalytic His195) and Ser318 (on the alpha-H helix which rearranges on substrate binding). In order to investigate the contribution of this conserved amino acid residue, Thr198, two mutants of Bacillus stearothermophilus lactate dehydrogenase were created (Val198 and Ile198). The steady-state kinetic parameters for both mutant enzymes were very similar with increased substrate Km and reduced kcat when compared with the wild-type enzyme. The mutation Val198 allowed non-productive binding of pyruvate to the unprotonated form of His195. Steady-state kinetic parameters determined for the Val198 mutant enzyme in high solvent viscosity suggested both an altered rate-limiting step in catalysis and implicated Thr198 in allosteric activation by the effector fructose 1,6-bisphosphate (Fru1,6P2). A shift in the Fru1,6P2 activation constant for the Val198 mutant enzyme suggested that Thr198 stabilises the catalytically competent (Fru1,6P2-activated) form of the enzyme by 6.6 kJ/mol. However, Thr198 was not important for maintaining the thermal stability of the Fru1,6P2-activated form. Equilibrium unfolding in guanidinium chloride indicated that Thr198 contributes 17.2 kJ/mol subunits towards the tertiary structural stability. The results emphasise the importance of the side chain-hydroxyl group of Thr198 which is required for (a) productive substrate binding, (b) allosteric activation and (c) protein conformational stability. The characteristics of the B. stearothermophilus lactate dehydrogenase mutations reported here were significantly different from those of the same mutations made in the corresponding position of the analogous enzyme Thermus flavus malate dehydrogenase [Nishiyama, M., Shimada, K., Horinouchi, S., & Beppu, T. (1991) J. Biol. Chem. 266, 14294-14299].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号