首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline diamond (NCD) films are synthesized using microwave plasma enhanced chemical vapour deposition technique at 2 × 104 Pa and 600 °C with microwave power of 600-1600 W. Deposition is carried out on n-type (100) silicon wafer with Ar/H2/CH4 gas mixtures. The film properties are analyzed using micro Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy and atomic force microscopy. Raman spectra show two predominant peaks centered around 1335 cm−1 and 1560 cm− 1 and two humps around 1160 cm− 1 and 1450 cm− 1, respectively. FTIR spectra show C:H stretching modes around 3000 cm− 1. XRD patterns show a peak at 44° (2θ). In situ diagnostic of plasma is carried out using Optical Emission Spectroscopy. It has been observed that C2 dimer plays an important role in the nucleation of diamond crystals during NCD film deposition and the emission intensity of C2 can be adjusted by varying the microwave power. It has also been observed that the structural properties like growth rate, surface morphology and grain size of the growing film are dependent on the C2 intensity during deposition.  相似文献   

2.
LiOH·H2O, Ni(CH3COO)2·4H2O and NH4VO3 were used to synthesize nano-crystalline LiNiVO4 by hydrothermal process in deionized water at 150 °C for 2 h and subsequent calcination at 300-600 °C for 6 h. By using an X-ray diffractometer (XRD), a transmission electron microscope (TEM) and a selected area electron diffraction (SAED) method, nano-crystalline LiNiVO4 with inverse spinel structure was detected. The stretching vibration of VO4 tetrahedrons analyzed by a Fourier transform infrared spectrometer (FTIR) was split into three bands at 661, 746 and 835 cm− 1, and that analyzed by a Raman spectrometer was detected at 823.9 and 787.7 cm− 1. The thermogravimetric and differential thermal analyses (TGA and DTA) show two discrete weight losses at 25-117 °C and 117-600 °C and four endothermic peaks at 84, 145, 202 and 372 °C, corresponding to the evaporation of water and the decomposition of inorganic and organic compounds.  相似文献   

3.
Diamond films were synthesized by direct current plasma chemical vapour deposition using a CH4+CO2+H2 gas mixture on Si substrates. The optimum deposition conditions were determined. It was found that 0.4 A/cm2 current density, at applied voltage of 1 kV, resulted in good-quality diamond films. The substrate temperature was 750 K which is considerably lower than the conventional requirement of ∼1100 K. Boron doping was achieved by passing a portion of the gas mixture through boric acid dissolved in methanol. The boron-doped p-type diamond films were deposited on an n-type single crystalline Si substrate and an n-Si/p-diamond heterojunction was fabricated. The p-n junction was characterized in terms of current-voltage (I-V) and capacitance-voltage (C-V) measurements.  相似文献   

4.
Y.M. Hu  C.Y. Wang  T.C. Han 《Thin solid films》2010,519(4):1272-1276
This paper investigates the anomalous and specific Raman modes present in Mn-doped ZnO thin films deposited using the magnetron co-sputtering method. To trace these peaks, we prepared Mn-doped ZnO films with different Mn concentrations by altering the sputtering power of the Mn target in a pure Ar or Ar + N2 sputtering atmosphere. A broad band observed in the Raman spectra of heavily Mn-doped ZnO films ranges from 500 to 590 cm− 1. This band involves the enhanced A1 longitudinal mode and activated silent modes of ZnO, as well as a characteristic mode of Mn2O3. Four anomalous Raman peaks at approximately 276, 510, 645 and 585 cm− 1 are present in pure and Mn-doped ZnO films deposited under the Ar + N2 sputtering atmosphere. The peaks at 276 cm− 1 and 510 cm− 1 may originate from the complex defects of Zni-NO and Zni-Oi, respectively, while the peak at approximately 645 cm− 1 could be due to a complex defect of Zni coupled with both the N and Mn dopants. The results of this study suggest classifying the origins of anomalous and specific Raman peaks in Mn-doped ZnO films into three major types: structural disorder and morphological changes caused by the Mn dopant, Mn-related oxides and intrinsic host-lattice defects coupled with/without the N dopant.  相似文献   

5.
A high electron density (> 1011 cm− 3) and low electron temperature (1-2 eV) plasma is produced by using a microwave plasma source utilizing a spoke antenna, and is applied for the high-rate synthesis of high quality microcrystalline silicon (μc-Si) films. A very fast deposition rate of ∼ 65 Å/s is achieved at a substrate temperature of 150 °C with a high Raman crystallinity and a low defect density of (1-2) × 1016 cm− 3. Optical emission spectroscopy measurements reveal that emission intensity of SiH and intensity ratio of Hα/SiH are good monitors for film deposition rate and film crystallinity, respectively. A high flux of film deposition precursor and atomic hydrogen under a moderate substrate temperature condition is effective for the fast deposition of highly crystallized μc-Si films without creating additional defects as well as for the improvement of film homogeneity.  相似文献   

6.
C.H. Jung  Y.K. Kang 《Thin solid films》2009,517(14):4078-4081
The electrical and optical properties of amorphous indium gallium zinc oxide (a-IGZO) films, which can be used as a channel layer, deposited by radio frequency (rf) magnetron sputtering system at room temperature (RT), were investigated as function of various gas flows. The optical transmittance of films deposited under Ar, O2 / Ar + O2 and O2 / Ar-4% H2 + O2 atmospheres in the visible wavelength was consistently above 90% at a wavelength of 550 nm at all gas flows, although the film deposited under Ar-4% H2 atmosphere exhibited a transmittance of below 50%. The carrier concentration and mobility of the a-IGZO films fabricated under Ar and Ar-4% H2 were observed slight decrease as a function of the flow, respectively. The thin film transistors (TFTs) with an a-IGZO channel deposited under Ar and Ar-4% H2 atmosphere exhibited the following good characteristics: Vth of 0.34 V, µFE of 3.6 cm2 V− 1 s− 1, on/off ratio of 106, and S value of 0.04 V decade− 1.  相似文献   

7.
C.R. Li  W.J. Dong 《Materials Letters》2010,64(24):2735-2737
Photoconductive devices, with remarkable photoconductive performance, of fluorine doped tin oxide/TiO2/(C6H13NH3)2(CH3NH3)m − 1PbmI3m + 1 (m = 1, 2):TiO2/Pt were fabricated. An electron injection mechanism from the (C6H13NH3)2(CH3NH3)m − 1PbmI3m + 1 (m = 1, 2) to TiO2 was proposed for the photoconductive effects, where organic-inorganic hybrid perovskite (C6H13NH3)2(CH3NH3)m − 1PbmI3m + 1 (m = 1, 2), self-organized into mesoscopic TiO2 films from solution directly, served as the electron donor. The photoconductive performance of the devices can be adjusted by the inorganic sheet thickness (tuned by m) of the hybrid perovskite. The photocurrent value increased as m value increased at the same illumination. Further, when bias voltage was 1.0 V, the ratio of photocurrent and dark current for (C6H13NH3)2(CH3NH3)2− Pb2I7:TiO2 reached as high as 7.05 × 103. The devices could be potentially used as light detectors and light-controlled switch.  相似文献   

8.
S. Kaleemulla 《Materials Letters》2007,61(21):4309-4313
Indium oxide (In2O3) thin films were prepared by flash evaporated technique under various substrate temperatures in the range of 303-673 K and systematically studied the structural, electrical and optical properties of the deposited films. The films formed at substrate temperatures of < 373 K were amorphous while those deposited at higher substrate temperatures (≥ 373 K) were polycrystalline in nature. The optical band gap of the films decreased from 3.71 eV to 2.86 eV with the increase of substrate temperature from 303 K to 673 K. Figure of merit of the films increased from 2.8 × 103 Ω 1 cm 1 to 4.2 × 103 Ω 1 cm 1 with increasing substrate temperature from 303 K to 573 K, thereafter decreased to 2.2 × 103 Ω 1 cm 1 at higher temperature of 673 K.  相似文献   

9.
Inverse spinel zinc stannate (Zn2SnO4, ZTO) films were deposited onto fused quartz glass substrates heated at 800 °C by rf magnetron sputtering using a ceramic ZTO target (Zn:Sn = 2:1). H2 flow ratios [H2/(Ar + H2)] were controlled from 0 to 30% during the depositions. ZTO films deposited at 800 °C possessed a polycrystalline inverse spinel structure. The lowest resistivity of 1.1 × 10− 2 Ω cm was obtained for a ZTO film deposited at 20% H2 flow ratio. The transmittance of the ZTO film was approximately 80% in the visible region.  相似文献   

10.
Thin film WO3 photoanodes were prepared by reactive sputtering in Ar and O2 gas mixtures of various flow rate combinations. Furnace annealed films were nanocrystalline monoclinic WO3 with (002), (020) and (200) plane orientations. Water oxidation in 0.33 M H2SO4 electrolyte under simulated solar illumination showed that photoanodes deposited in highest Ar and O2 flow rate combinations exhibited highest photocurrent of 4.1 mA cm−2 (at 1.3 V vs Ag/AgCl) compared to 3–3.8 mA cm−2 for photoanodes deposited in lower flow rate combinations. The higher photocurrents were ascribed to lower bulk resistivity and charge transfer resistance at the WO3/electrolyte interface. These photoanodes consisted of randomly oriented (002), (020) and (200) planes in contrast to the preferentially orientated (002) and (200) planes of photoanodes which were highly resistive with poorer photocurrent responses. These results were interpreted in terms of the effects of Ar:O2 flow rate combinations on the distribution of oxygen vacancies and formation of crystallographic shear planes in the sputtered films.  相似文献   

11.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

12.
Titanium dioxide thin films were obtained by RF magnetron sputtering system with different Ar and O atmospheres. Chemical bonding structures of the thin films were investigated using the Fourier transform infrared spectroscopy (FTIR) in the range of 400-7500 cm− 1 for as-deposited and conventionally thermal annealed films at different temperature in air. These structural characterizations of the films were carried out by describing the low-frequency fluctuations of the FTIR spectra using the noninvasive (i.e. error controllable) procedure of the optimal linear smoothing. This approach is based on the criterion of the minimal relative error in selection of the proper smoothing window. It allows the receiving an optimal separation of a possible trend from the high-frequency fluctuations, defined as a random sequence of the relative fluctuations possessing zero trends. Thus, the noise can be read and extra information about the structures was then obtained by comparing with the experimental results. In the film annealed at 900 °C, the rutile phase was the dominant crystalline phase as revealed by infrared spectroscopy. At the annealing temperatures lower than 900 °C, both the anatase and the rutile phases were coexisting. In addition, symmetric and asymmetric Si-O-Si vibrations modes were observed at around 1000 cm− 1 and 800 cm− 1, respectively. These peaks suggest that a thin SiO2 film was formed at the TiO2/Si interface during the growth and the annealing of the TiO2 films. It was also observed that the reactivity between TiO2 film and Si substrate is increased with the increasing annealing temperature.  相似文献   

13.
This study synthesized the nanocrystalline diamond/amorphous carbon (NCD/a-C) composite films by the microwave plasma-enhanced chemical vapor deposition (MPCVD) system with Ar/CH4/N2 mixtures. A localized rectangular-type jet-electrode with high density plasma was used to enhance the formation of NCD/a-C films, and a maximum growth rate of 105.6 µm/h was achieved. The content variations of sp2 and sp3 phases via varying nitrogen gas flow rates were investigated by using Raman spectroscopy. The NCD/a-C film which synthesized with 6% nitrogen concentration and no hydrogen plasma etching treatment possessed a low turn-on electric field of 3.1 V/µm at the emission current of 0.01 µA.  相似文献   

14.
Wide band gap InGaZn6O9 films of thickness ~ 350 nm were deposited on sapphire (0001) at room temperature by using the pulsed laser deposition technique. The transparent films showed the optical transmission of > 80% with the room temperature Hall mobility of ~ 10 cm2/V s and conductivity of 4 × 102 S/cm at a carrier density > 1020 cm− 3. The electrical properties as a function of deposition temperatures revealed that the conductivity and mobility almost retained up to the deposition temperature of 200 °C. The films annealed in different atmospheres suggested oxygen vacancy plays an important role in determining the electrical conductivity of the compound. Room temperature grown heterostructure of n-InGaZn6O9/p-SiC showed a good rectifying behavior with a leakage current density of less than 10− 9 A/cm2, current rectifying ratio of 105 with a forward turn on voltage ~ 3 V, and a breakdown voltage greater than 32 V.  相似文献   

15.
The kinetic properties of monoclinic lithium vanadium phosphate were investigated by potential step chronoamperometry (PSCA) and electrochemical impedance spectroscopy (EIS) method. The PSCA results show that there exists a linear relationship between the current and the square root of the time. The D?Li values of lithium ion in Li3-xV2(PO4)3 under various initial potentials of 3.41, 3.67, 3.91 and 4.07 V (vs Li/Li+) obtained from PSCA are 1.26 × 10− 9, 2.38 × 10− 9, 2.27 × 10− 9 and 2.22 × 10− 9 cm2·s− 1, respectively. Over the measuring temperature range 15-65 °C, the diffusion coefficient increased from 2.67 × 10− 8 cm2·s− 1 (at 15 °C) to 1.80 × 10− 7 cm2·s− 1 (at 65 °C) as the measuring temperature increased.  相似文献   

16.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

17.
Monoclinic rubidium gadolinium bis(tungstate) single crystals, RbGd(WO4)2 (RGW), have been grown by the spontaneous nucleation from high-temperature solutions. The thermal properties were firstly studied by measuring DSC, TG and specific heat. The melting point was determined to be 1089 °C. The measured specific heat ranges from 0.141 J g− 1 K− 1 to 0.564 J g− 1 K− 1 in the temperature range from 60 °C to 700 °C, a value that is slightly smaller than that of KGd(WO4)2. An infrared spectrum of the crystal was recorded in the frequency range of 50 to 1000 cm− 1 and all vibration frequency peaks were assigned.  相似文献   

18.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

19.
Cu2SnSe3 thin films were prepared by single-step D.C. sputtering at 100-400 °C for 3 h using targets composed of Cu2Se and SnSe2 in three different ratios of 2/1 (target A), 1.8/1 (target B), and 1.6/1 (target C). The advantages of self-synthesized SnSe2 instead of commercially available SnSe for depositing Cu2SnSe3 thin films were demonstrated. Effects of target composition and substrate temperature on the properties of Cu2SnSe3 thin films were investigated. Structure, surface morphology, composition, electrical and optical properties at different process conditions were measured. The 400 °C-sputtered films obtained from target B display with direct band gap of 0.76 eV, electrical resistivity of 0.12 Ω cm, absorption coefficient of 104-105 cm− 1, carrier concentration of ∼ 1.8 × 1019 cm− 3, and electrical mobility of 2.9 cm2/V s.  相似文献   

20.
Lili Chen  Liang Fang  Yu Xu 《Thin solid films》2008,516(6):1285-1289
A thin TiO2 buffer layer was used to control the microstructure and electrical properties of the polycrystalline (Pb,Sr)TiO3 (PST) films produced by a Sol-Gel method on Pt(111)/Ti/SiO2/Si(100) substrates. The PST films included (Pb0.6Sr0.4)TiO3 (PST40) and (Pb0.4Sr0.6)TiO3 (PST60). It was found that a crystallized TiO2 buffer layer with a thickness of nearly 5 nm was critical for improving the crystallinity and surface morphology of both the thinner (about 40 nm) and thicker (about 330 nm) PST films, which exhibited a (l00) preferred orientation and much smoother surface comparing with those without the buffer layer. The electrical properties of the PST films having TiO2 buffer layer were also improved. For 330-nm-thick PST40 films, the dielectric constant and its tunability by dc voltage were increased from 482 and 26.8% at 10 kHz to 590 and 51.2%, while the loss and leakage current density were reduced from 0.04 and 4.26 × 10−4 A/cm2 at 100 kV/cm to 0.034 and 7.63 × 10−6 A/cm2, respectively. Similar results were also found in the PST60 films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号