首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al0.3Ga0.7As/GaAs Quantum Well structures were grown by molecular beam epitaxy (MBE) on a 500 nm thick GaAs buffer layer subjected to the following surface processes: a) in-situ Cl2 etching at 70 °C and 200 °C, b) air-exposure for 30 min. The characteristics of these samples were compared to those of a continuously grown sample with no processing (control sample). We obtained the quantum wells energy transitions using photoreflectance spectroscopy as a function of the temperature (8-300 K), in the range of 1.2 to 2.1 eV. The sample etched at 200 °C shows a larger intensity of the quantum well peaks in comparison to the others samples. We studied the temperature dependence of the excitonic energies in the quantum wells (QWs) as well as in GaAs using three different models; the first one proposed by Varshni [4], the second one by Viña et al. [5], and the third one by Pässler and Oelgart [6]. The Pässler model presents the best fitting to the experimental data.  相似文献   

2.
The epitaxial growth of p-sexiphenyl (C36H26, 6P) on highly oriented pyrolytic graphite (HOPG) surface has been investigated by scanning tunneling microscopy (STM). 6P molecules prefer epitaxial growth with the long axis along the [110] direction (armchair direction) of the HOPG substrate, with the unit cell parameters b1 = 0.67 ± 0.06 nm, b2 = 5.97 ± 0.06 nm and angle of 88 ± 3° between them. The relation of the 6P overlayer lattice vectors with the HOPG substrate has also been deduced, i.e. the 5 × 1 supercell is in a point-on-point commensurate relation with respect to the HOPG substrate surface.  相似文献   

3.
We study the effect of nitrogen content in modulation-doped GaAs/GaAs1 − xNx/GaAs/GaAlAs:(Si) quantum well using low-temperature photoluminescence spectroscopy. The samples were grown on GaAs (001) substrates by molecular-beam epitaxy with different nitrogen compositions. The variation of the nitrogen composition from 0.04% to 0.32% associated to the bi-dimensional electron gas gives a new interaction mode between the nitrogen localized states and the GaAs1 − xNx/GaAs energies levels. The red-shift observed in photoluminescence spectra as function of nitrogen content has been interpreted in the frame of the band anticrossing model.  相似文献   

4.
A series of single phase solid-solution K4Ce2Ta10−xNbxO30 (x = 0-10) photocatalysts were synthesized by conventional high temperature solid state reaction. Their UV-vis diffuse reflectance spectra showed their absorbance edges shifted to long wavelength zone consistently with the increase of the amount of Nb for substituting Ta in these compounds, and the onsets of absorbance edges ranging from about 540 nm to 690 nm, corresponding to bandgap energy of 1.8-2.3 eV. These series of photocatalysts possess appropriate band gap (ca. 1.8-2.3 eV) and chemical level to use solar energy to decompose water into H2, and the photocatalytical activities under visible light (λ > 420 nm) demonstrated that the activities decreased correspondingly with the increase of the amount of Nb in these compounds, which is regarded as the result of the differences of their band structures. Furthermore, the photocatalytical activities and the photophysical properties of these visible light-driven photocatalysts K4Ce2Ta10−xNbxO30 (x = 0-10) were bridged by the first principle calculation based on Density Functional Theory with General Gradient Approximation and Plane-wave Pseudopotential methods.  相似文献   

5.
In this study, the quantum confinement effect on recombination dynamics and carrier localization in cubic InN (c-InN) and cubic InxGa1 − xN (c-InxGa1 − xN) low dimensional structures are theoretically examined. The small InN and In-rich InxGa1 − xN low dimensional structures show a strong quantum confinement effect, which results in ground states away from the band edge and discrete eigen-states. Depending on composition, temperature, and size of the InN and InxGa1 − xN low dimensional structures, quantum confinement effect can affect the exciton dimensions (D). In InN quantum cubes, the strong quantum confinement effect leads to temperature-dependent radiative lifetimes showing a large size variation. The nearly-temperature-independent and shorter radiative lifetimes in small InN and In-rich InxGa1 − xN low dimensional structures suggest that the strong quantum confinement leads to 0 D carrier confinement, stronger carrier localization, and high recombination efficiency. Reported radiative lifetimes were found to match very well with our simulation results of In-rich quantum cubes, which indicates that spontaneous emissions come from the radiative recombination of localized excitons in In-rich InxGa1 − xN clusters. The simulation results could provide important information for the designs and interpretations of c-InN and c-InxGa1 − xN devices.  相似文献   

6.
The preparations of the 20-period of a Si quantum dot (QD)/SiNx multilayer in a hot-wire chemical vapor deposition (HWCVD) chamber is presented in this paper. The changes in the properties of Si-QDs after the post deposition annealing treatment are studied in detail. Alternate a-Si:H and SiNx layers are grown in a single SiNx deposition chamber by cracking SiH4, and SiH4 + NH3, respectively at 250 °C. The as-deposited samples are annealed in the temperature range of 800 °C to 950 °C to grow Si-QDs. All the samples are characterized by confocal micro Raman, transmission electron microscope (TEM), and photoluminescence (PL) to study the changes in the film structures after the annealing treatment. The micro Raman analysis of the samples shows the frequency line shifting from 482 cm− 1 to 500 cm− 1 indicating the Si transition from an amorphous to a crystalline phase. The TEM micrograph inspection indicates the formation of Si-QDs of size 3 to 5 nm and a density of 5 × 1012/cm2. The high resolution TEM micrographs show an agglomeration of Si-QDs with an increase in the annealing temperature. The PL spectra show a peak shifting from 459 nm to 532 nm with increasing the annealing temperature of the film.  相似文献   

7.
Cd(1 − x)ZnxS thin films have been grown on glass substrates by the spray pyrolysis method using CdCl2 (0.05 M), ZnCl2 (0.05 M) and H2NCSNH2 (0.05 M) solutions and a substrate temperature of 260 °C. The energy band gap, which depends on the mole fraction × in the spray solution used for preparing the Cd(1 − x)ZnxS thin films, was determined. The energy band gaps of CdS and ZnS were determined from absorbance measurements in the visible range as 2.445 eV and 3.75 eV, respectively, using Tauc theory. On the other hand, the values calculated using Elliott-Toyozawa theory were 2.486 eV and 3.87 eV, respectively. The exciton binding energies of Cd0.8Zn0.2S and ZnS determined using Elliott-Toyozawa theory were 38 meV and 40 meV, respectively. X-ray diffraction results showed that the Cd(1 − x)ZnxS thin films formed were polycrystalline with hexagonal grain structure. Atomic force microscopy studies showed that the surface roughness of the Cd(1 − x)ZnxS thin films was about 50 nm. Grain sizes of the Cd(1 − x)ZnxS thin films varied between 100 and 760 nm.  相似文献   

8.
Yozo Watanabe 《Vacuum》2009,84(5):514-517
(ZnO)1−x(GaN)x:Mn2+ powder was prepared by a conventional solid-state reaction under an NH3 gas flow. The sample preparation conditions including the mixing ratio of the raw materials, the annealing temperature, and the annealing time were varied. The crystallinity and the photoluminescence (PL) intensity of this fluorescent material were improved by increasing the amount of ZnO and by increasing the annealing time, and no changes was observed in the PL wavelength. The crystallinity of the samples was enhanced and the PL intensity increased markedly at annealing temperatures of 700 °C and 800 °C, respectively. Moreover, it was clarified that the sample could be synthesized at annealing temperatures of above about 650 °C.  相似文献   

9.
Amorphous hydrogenated germanium-carbon (a-Ge1−xCx:H) films were deposited by RF reactive sputtering pure Ge (1 1 1) target at different flow rate ratios of CH4/(CH4+Ar) in a discharge Ar/CH4, and their composition and chemical bonding were investigated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). XPS and FTIR results showed the content of germanium in the films decreased with the increase of the flow rate ratio CH4/(Ar+CH4), and the Ge-C, Ge-H, C-H bonds were formed in the films. The fraction of Ge-C, Ge-H, and C-H bonds was strongly dependent on the flow rate ratio. Raman results indicated that the films also contain both Ge-Ge and C-C bonding. Based on the change of the chemical bonding of a-Ge1−xCx:H films with the flow rate ratio CH4/(CH4+Ar), an optimal experimental condition for the application of infrared windows was obtained.  相似文献   

10.
Antireflective sub-wavelength structures (SWSs) combined a Ge1−xCx coating on Zinc sulfide (ZnS) can enhance the long-wave infrared transmission and durability of ZnS, which have the potent for practical applications. We have investigated the antireflective characteristics of Ge1−xCx sub-wavelength periodic hole structures on ZnS through the Fourier modal method (FMM) for application with normally incident, randomly polarized, 10.6 μm wavelength. Then according to the results, we have successfully fabricated the sub-wavelength periodic square hole structures with Ge0.05C0.95 films on one side of ZnS. A substantial transmittance improvement for bare ZnS in the 8-12 μm spectral region was obtained.  相似文献   

11.
The BiCoxFe1 − xO3 samples have been successfully synthesized by hydrothermal process. The resulting products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDS), differential thermal analysis (DTA), and physical property measurement system (PPMS).It was found that the magnetization of the obtained products was greatly enhanced by Co substituting for Fe ions. Furthermore, the value of magnetism of BiCoxFe1 − xO3 samples can be adjusted by Fe doping concentration. DTA curve indicates the ferroelectric properties of the obtained BCFO samples are not affected by Co substitution. Therefore, it would be interesting to realize thin films with similar compositions and study their properties in the interest of device applications.  相似文献   

12.
The effect of alloying and expitaxial mismatch strain on the surface ultraviolet (UV) emission efficiencies of AlxGa1 − xN films, pseudomorphically grown on both c- and m-plane AlyGa1 − yN templates (x < y) for various Al-content combinations, has been investigated under the framework of k·p perturbation theory. The results indicate that the film/template Al-content combination with y > − 0.03 + 1.79x−0.06x2 (0 < x < y < 1) for the c-plane case and the film/template with all y:x (0 < x < y < 1) combinations for the m-plane case, are particularly suitable for obtaining efficient UV light emissions. In the latter case, it's also ideal for fabricating edge-emitting UV devices with predominant transverse electric mode. Furthermore, polarized emissions with high polarization degree can be achieved by properly tuning the y:x ratio for certain x.  相似文献   

13.
Electrically active defects induced by irradiation with 4 MeV electrons and their influence on dynamic and static parameters of p-n-structures with bases on boron doped Si1−xGex alloys (0<x?0.06) have been investigated. It has been found that after irradiation with the electron fluence Φ=2×1014 cm−2 lifetime of minority charge carriers decreases more than 12 times and forward voltage increases twice. Deep level transient spectroscopy (DLTS) studies have shown that interstitial carbon atoms are dominant electrically active defects induced by the irradiation. These defects are transformed into the complexes “interstitial carbon—interstitial oxygen” upon annealing of irradiated samples in the temperature range 50-100 °C.  相似文献   

14.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

15.
S. Han  D.Z. Shen  Y.M. Zhao  Z.G. Ju  B. Yao 《Vacuum》2010,84(9):1149-21761
Cubic MgxZn1xO thin films with Mg composition around 70% were deposited on A-plane and M-plane sapphire substrates by rf-reactive magnetron sputtering. Measured structural and optical properties of these thin films indicated an optimal annealing temperature of 700 °C which produced high quality cubic MgZnO thin films on both substrates. Moreover, when the annealing temperature exceeded 750 °C, a much rougher surface resulted, and several large mosaic particles on the surface of the annealed films appeared. From EDX results, the Mg composition was lower than that found in other sections of the annealed films. We attributed this to thermally induced reconstruction of the crystallites. This phenomenon was more obvious for annealed MgZnO films on A-plane sapphire than that on M-plane sapphire. Thermal expansion mismatch with the substrate is the principal reason.  相似文献   

16.
The driving force for creep crack growth is dominated by local elastic-plastic stress in the creep damage zone around a crack tip, temperature and microstructure. In previous work, C, Ct, load line displacement rate dδ/dt and Q parameters have been proposed as formulations of creep crack growth rate (CCGR). Furthermore, using parameters mentioned above, the construction of the algorithm of predictive law for creep crack growth life is necessary for life assessment procedures. The aim of this paper is to identify the effects of component size, geometry, microstructure, aging and weldment on the embrittling behavior of creep crack growth and incorporate these effects in a predictive law, using the Q parameter. It was found that for specimen size (width and thickness) and of material softening due to aging the values of the activation energy were the same whereas for grain size change and structural brittleness, which affected crack tip multi-axial stress state the values for the activation energy for CCGR differ.  相似文献   

17.
18.
R.F. Zhang 《Thin solid films》2008,516(8):2264-2275
Bulk properties of stable binary fcc-TiN and hcp(β)-Si3N4, hypothetical fcc-SiN and hcp(β)-Ti3N4, and ternary Ti1 − xSixNy phases are calculated by ab initio method. The values of total energies are then used for thermodynamic calculations of the lattice instabilities of hypothetical binary phases of fcc-SiN and hcp-Ti3N4, and of the interaction parameters of ternary Ti1 − xSixNy phases. Based on these data, Gibbs free energy diagrams of the quasi-binary TiNy-SiNy system are constructed in order to study the relative phase stability of the metastable ternary fcc- and hcp-Ti1 − xSixNy phases over the entire range of compositions. The results are supported by the published data from chemical and physical vapor deposition experiments. The constructed Gibbs free energy diagram and phase selection diagram of quasi-binary TiNy-SiNy system in fcc structure show that metastable fcc-Ti1 − xSixN coatings should undergo chemically spinodal decomposition into coherent fcc-TiN and fcc-SiN. Due to a high lattice mismatch between fcc-TiN and hcp-Si3N4, and to much higher lattice instability of fcc-SiN with respect to stable hcp-Si3N4, only about one monolayer of pseudomorphic SiNy interfacial phase is stable.  相似文献   

19.
Thermoelectric solid solutions of Bi2 (Te1−xSex)3 with x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were grown using the Bridgman technique. Thin films of these materials of different compositions were prepared by conventional thermal evaporation of the prepared bulk materials. The temperature dependence of the electrical conductivity σ, free carriers concentration n, mobility μH, and seebeck coefficient S, of the as-deposited and films annealed at different temperatures, have been studied at temperature ranging from 300 to 500 K. The temperature dependence of σ revealed an intrinsic conduction mechanism above 400 K, while for temperatures less than 400 K an extrinsic conduction is dominant.The activation energy, ΔE, and the energy gap, Eg, were found to increase with increasing Se content. The variation of S with temperature revealed that the samples with different compositions x are degenerate semiconductors with n-type conduction. Both, the annealing and composition effects on Hall constant, RH, density of electron carriers, n, Hall mobility, μH, and the effective mass, m/m0 are studied in the above temperature range.  相似文献   

20.
Hui Li 《Vacuum》2008,82(5):459-462
The MgxZn1−xO films were prepared in different Ar-O2 mixture ambience by magnetron sputtering. According to the X-ray diffraction (XRD) patterns and the energy dispersive X-ray spectroscopy (EDS) results, it was found that the Mg contents in the films varied with the different ratios of O2/O2+Ar, and the crystal quality of the films improved with the increasing of Mg contents. Meanwhile, the ultraviolet and visible (UV-vis) absorption spectroscopy indicated that the band gap of the films also increased. Moreover, it could be seen that the photoluminescence (PL) spectrum was different from that of undoped Zinc oxide (ZnO) films or the results in other reports on the MgxZn1−xO films: there was no blueshift effect happening for the near-band-edge (NBE) emission in MgxZn1−xO films with different Mg contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号