首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian reproductive function is under control of the integrated hypothalamic-pituitary-gonadal (HPG) axis. Castration in male rats has been utilized as an effective tool to investigate hormonal interactions in the mammalian HPG axis. Recently, nitric oxide (NO) has been suggested to play a role in HPG hormonal regulation. In order to gain further insight into the function of the NO-NOS system in reproductive neuroendocrine control, particularly in the gonadal feedback regulation of the hypothalamic-pituitary unit, we examined steady state levels of nNOS mRNA, nNOS protein, and the important physiological index, NOS enzyme activity, of the intrinsic NOergic system in both hypothalamus and pituitary in castrated male rats and their sham-operated counterparts one week after surgery. In the pituitary, we found a significant four-fold increase in nNOS mRNA, p < 0.0003 compared to sham. Castration also resulted in a four-fold rise in pituitary nNOS protein, p < 0.02 compared to sham. Pituitary NOS enzyme activity was stimulated 2 fold, p < 0.003 after castration. In the hypothalamus, conversely, we observed no significant castration-modulated difference in either nNOS mRNA, nNOS protein or NOS enzyme activity. Thus, it appears that the hypothalamic NO-NOS system is either not required for hypothalamic adaptations to castration, although important in the release of LHRH under normal physiological conditions, or alternatively, the hypothalamus may become more sensitive to the effects of NO in the castrated state. In the pituitary, NO may attenuate the gonadotropin response to castration as a local balancing mediator.  相似文献   

2.
Neurocircuit inhibition of hypothalamic paraventricular nucleus (PVN) neurons controlling hypothalamo-pituitary-adrenocortical (HPA) activity prominently involves GABAergic cell groups of the hypothalamus and basal forebrain. In the present study, stress responsiveness of GABAergic regions implicated in HPA inhibition was assessed by in situ hybridization, using probes recognizing the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms). Acute restraint preferentially increased GAD67 mRNA expression in several stress-relevant brain regions, including the arcuate nucleus, dorsomedial hypothalamic nucleus, medial preoptic area, bed nucleus of the stria terminalis (BST) and hippocampus (CA1 and dentate gyrus). In all cases GAD67 mRNA peaked at 1 hr after stress and returned to unstimulated levels by 2 hr. GAD65 mRNA upregulation was only observed in the BST and dentate gyrus. In contrast, chronic intermittent stress increased GAD65 mRNA in the anterior hypothalamic area, dorsomedial nucleus, medial preoptic area, suprachiasmatic nucleus, anterior BST, perifornical nucleus, and periparaventricular nucleus region. GAD67 mRNA increases were only observed in the medial preoptic area, anterior BST, and hippocampus. Acute and chronic stress did not affect GAD65 or GAD67 mRNA expression in the caudate nucleus, reticular thalamus, or parietal cortex. Overall, the results indicate preferential upregulation of GAD in central circuitry responsible for direct (hypothalamus, BST) or multisynaptic (hippocampus) control of HPA activity. The distinct patterns of GAD65 and GAD67 by acute versus chronic stress suggest stimulus duration-dependent control of GAD biosynthesis. Chronic stress-induced increases in GAD65 mRNA expression predict enhanced availability of GAD65 apoenzyme after prolonged stimulation, whereas acute stress-specific GAD67 upregulation is consistent with de novo synthesis of active enzyme by discrete stressful stimuli.  相似文献   

3.
Nitric oxide (NO) is an ubiquitous intercellular messenger molecule synthesised from the amino acid L-arginine by the enzyme nitric oxide synthase (NOS). A number of NOS iso-enzymes have been identified, varying in molecular size, tissue distribution and possible biological role. To further understand the role of NO in the regulation of neuroendocrine function in the sheep, we have purified and characterised ovine neuronal NOS (nNOS) using anion exchange, affinity and size-exclusion chromatography. SDS-PAGE reveals that ovine nNOS has an apparent denatured molecular weight of 150 kDa which correlates well with the other purified nNOS forms such as rat, bovine and porcine. The native molecular weight predicted by size-exclusion chromatography was 200 kD which is in close agreement with that found for porcine and rat nNOS. Internal amino acid sequences generated from tryptic digests of the purified ovine nNOS are highly homologous to rat nNOS. There was no significant difference in the cofactor dependence and kinetic characteristics of ovine nNOS when compared to rat and bovine nNOS, (K(m) for L-arginine 2.8, 2.0 and 2.3 microM respectively). A polyclonal anti-peptide antibody directed toward the C-terminal end of the rat nNOS sequence showed full cross-reactivity with the purified ovine nNOS. Immunohistochemical and Western analysis using this antiserum demonstrate the expression of nNOS in the cortex, cerebellum, hypothalamus and pituitary of the sheep. The lack of staining in the neural and anterior lobes of the pituitary seems to suggest that NOS plays a varied role in the control of endocrine systems between species.  相似文献   

4.
Recent work has demonstrated that the brain has the capacity to synthesize impressive amounts of the gases nitric oxide (NO) and carbon monoxide (CO). There is growing evidence that these gaseous molecules function as novel neural messengers in the brain. This article reviews the pertinent literature concerning the putative role of NO and CO as critical neurotransmitters and biological mediators of the neuroendocrine axis. Abundant evidence is presented which suggests that NO has an important role in the control of reproduction due to its ability to control GnRH secretion from the hypothalamus. NO potently stimulates GnRH secretion and also appears to mediate the action of one of the major transmitters controlling GnRH secretion, glutamate. Evidence is presented which suggests that NO stimulates GnRH release due to its ability to modulate the heme-containing enzyme, guanylate cyclase, which leads to enhanced production of the second messenger molecule, cGMP. A physiological role for NO in the preovulatory LH surge was also evidenced by findings that inhibitors and antisense oligonucleotides to nitric oxide synthase (NOS) attenuate the steroid-induced and preovulatory LH surge. CO may also play a role in stimulating GnRH secretion as heme molecules stimulate GnRH release in vitro, an effect which requires heme oxygenase activity and is blocked by the gaseous scavenger molecule, hemoglobin. Evidence is also reviewed which suggests that NO acts to restrain the hypothalamic-pituitary-adrenal (HPA) axis, as it inhibits HPA stimulation by various stimulants such as interleukin-1 beta, vasopressin, and inflammation. This effect fits a proinflammatory role of NO as it leads to suppression of the release of the anti-inflammatory corticosteroids from the adrenal. Although not as intensely studied as NO, CO has been shown to suppress stimulated CRH release and may also function to restrain the HPA axis. Evidence implicating NO in the control of prolactin and growth hormone secretion is also reviewed and discussed, as is the possible role of NO acting directly at the anterior pituitary. Taken as a whole, the current data suggest that the diffusible gases, NO and CO, act as novel transmitters in the neuroendocrine axis and mediate a variety of important neuroendocrine functions.  相似文献   

5.
Nitric oxide synthase, an enzyme responsible for nitric oxide (NO) formation has been found in the hypothalamic paraventricular nucleus and median eminence, structures closely associated with regulation of the pituitary activity, and the pituitary gland itself. Nitric oxide modulates the stimulated release of CRH from the rat hypothalamus in vitro, which suggests its role in regulating the secretion of ACTH from the pituitary corticotrops and of corticosterone from the adrenal cortex. The purpose of the present study was to elucidate the yet unknown role of endogenous NO in the HPA response to central cholinergic stimulation in conscious rats. Neither L-arginine an NO precursor, nor the NO synthase blockers N omega-nitro-L-arginine methyl ester (L-NAME) and N omega-nitro-L-arginine (L-NNA) caused any consistent changes in the basal serum corticosterone levels. L-arginine, given in higher doses (120-150 mg/kg ip) 15 min prior to icv carbachol (2 micrograms), markedly diminished the carbachol-induced rise in corticosterone secretion. Systemic pretreatment with the nitric oxide synthase inhibitor L-NAME (5 mg/kg) significantly raised the carbachol-elicited corticosterone response, while addition of L-arginine completely blocked the effect of L-NAME. A similar increase in the carbachol-induced corticosterone response was produced by icv pretreatment with L-NAME (2 micrograms), indicating a central site of the NO interaction with cholinergic stimulation of the HPA response. L-NAME is a weak inhibitor of neuronal NOS itself, and must first be de-estrified to N omega-nitro-L-arginine to potently inhibit this enzyme. Systemic (10 mg/kg) and icv (1 microgram) pretreatment with L-NNA enhanced more effectively the carbachol-induced rise in corticosterone secretion than did pretreatment with L-NAME by either route. These results are the first direct evidence that endogenous NO significantly inhibits the HPA response to central cholinergic, muscarinic receptor stimulation under in vivo conditions.  相似文献   

6.
The hypothalamo-pituitary-adrenocortical (HPA) axis is the primary modulator of the adrenal glucocorticoid stress response. Activation of this axis occurs by way of a discrete set of neurons in the hypothalamic paraventricular nucleus (PVN). The PVN neuron appears to be affected by multiple sources, including (1) brainstem aminergic/peptidergic afferents; (2) blood-borne information; (3) indirect input from limbic system-associated regions, including the prefrontal cortex, hippocampus, and amygdala; and (4) local-circuit interactions with the preoptic-hypothalamic continuum. Analysis of the literature suggests that different classes of stressor employ different stress circuits. Severe physiologic ("systemic") stress appears to trigger brainstem/circumventricular organ systems that project directly to the paraventricular nucleus. In contrast, stressors requiring interpretation with respect to previous experience ("processive" stressors) reach the PVN by way of multisynaptic limbic pathways. Limbic regions mediating processive stress responses appear to have bisynaptic connections with the PVN, forming intervening connections with preoptic/hypothalamic GABAergic neurons. Stressors of the latter category may thus require interaction with homeostatic information prior to promoting an HPA response. The HPA stress response thus appears to be a product of both the physiologic importance of the stimulus and the specific pathways a given stimulus excites.  相似文献   

7.
The hypothalamo-pituitary-adrenal axis is already functional in rat fetuses in late gestation. We have reported previously that prenatal morphine exposure induced a severe atrophy of the adrenals and a decrease of corticosterone release in newborn rats at birth and during the early postnatal period. The first aim of the present study was to determine the effects of prenatal morphine exposure (1) on corticotrophin releasing factor (CRF) content of the hypothalamus, CRF immunofluorescence in the median eminence, CRF mRNA in the paraventricular nucleus (PVN) and pro-opiomelanocortin (POMC) mRNA in the anterior pituitary gland; (2) on CRF-induced ACTH release from the anterior pituitary gland in vitro; and (3) on ACTH-induced corticosterone release by the adrenals in vitro. Moreover, as morphine is a hepatotoxic factor, we determined the effects of prenatal morphine on liver weight and plasma corticosteroid binding globulin (CBG) binding capacity in newborn rats. Since acute administration of morphine stimulates corticosterone secretion in adult rats and since maternal corticosterone can cross the placental barrier, we also measured both adrenal weight and glucocorticoid activity in newborns from adrenalectomized mothers treated with morphine. The present results show that prenatal morphine given to intact mothers induced adrenal atrophy and hypoactivity in newborns but did not affect the responsiveness of the anterior pituitary gland to CRF or that of the adrenal gland to ACTH. Prenatal morphine reduced both CRF content in the newborn hypothalamus and CRF immunofluorescence in the median eminence without a significant effect on CRF mRNA expression in the PVN. Moreover, morphine induced a significant decrease of POMC mRNA in the anterior pituitary gland. However, morphine did not significantly affect the weight of the liver, or the plasma CBG binding capacity for corticosterone, in rat pups. In contrast, morphine treatment of the adrenalectomized mothers did not induce adrenal atrophy in newborns and did not impair adrenal activation during the early postnatal period. Maternal adrenalectomy also prevented the effects of prenatal morphine on hypothalamic content of CRF, CRF immunofluorescence in the median eminence, and POMC mRNA in the anterior pituitary gland. However, adrenal atrophy was observed at term in newborns of adrenalectomized mothers treated with both morphine and corticosterone or only corticosterone. In conclusion, morphine given to pregnant rats induced inhibition of the hypothalamo-pituitary-adrenal axis in pups at term. As maternal adrenalectomy prevented these effects, we speculate that an adrenal factor of maternal origin, probably corticosterone, mediated these drug effects on newborns.  相似文献   

8.
The hypothalamic-pituitary-adrenal (HPA) axis is normally quiescent during the stress-hyporesponsive period (SHRP) from day 4-14 in infant rats. However, maternal deprivation (DEP) can disinhibit the HPA axis, thus enabling neonatal rats to respond to mild stressors. In an effort to understand how DEP may alter HPA axis sensitivity, we used in situ hybridization to measure changes in the expression of stress-responsive genes in the brains of neonatal rats. Despite the minimal HPA axis response in nondeprived rats during the SHRP (postnatal day 12), the mild stress of a saline injection significantly increased messenger RNA levels of two immediate-early genes (IEGs), c-fos and NGFI-B, in the hypothalamic paraventricular nucleus (PVN) and in the cerebral cortex. Following 24 h of DEP, the induction of IEGs in response to stress was greatly potentiated in the PVN of P12 neonates. In contrast, DEP attenuated the effects of stress on IEG induction in rats that had matured beyond the SHRP (P20). Surprisingly, DEP decreased basal levels of CRH messenger RNA in the PVN at P12 and P20. Thus the SHRP most accurately refers to HPA axis insensitivity to stress because the brain itself readily responds to stress as evidenced by the induction of IEGs.  相似文献   

9.
10.
11.
12.
13.
Corticotropin-releasing hormone (CRH) is the primary hypothalamic releasing factor that mediates the mammalian stress response. The CRH-binding protein (CRH-BP) is secreted from corticotropes, the pituitary CRH target cells, suggesting that the CRH-BP may modulate hypothalamic-pituitary-adrenal (HPA) axis activity by preventing CRH receptor stimulation. Transgenic mice were generated that constitutively express elevated levels of CRH-BP in the anterior pituitary gland. RNA and protein analyses confirmed the elevation of pituitary CRH-BP. Basal plasma concentrations of corticosterone and adrenocorticotropin hormone (ACTH) are unchanged, and a normal pattern of increased corticosterone and ACTH was observed after restraint stress. However, CRH and vasopressin (AVP) mRNA levels in the transgenic mice are increased by 82 and 35%, respectively, to compensate for the excess CRH-BP, consistent with the idea that CRH-BP levels are important for homeostasis. The transgenic mice exhibit increased activity in standard behavioral tests, and an altered circadian pattern of food intake which may be due to transgene expression in the brain. Alterations in CRH and AVP in response to elevated pituitary CRH-BP clearly demonstrate that regulation of CRH-BP is important in the function of the HPA axis.  相似文献   

14.
Ethanol (EtOH) suppression of the hypothalamic-pituitary-gonadal (HPG) axis results in broad reproductive malfunction. In the HPG axis, the suppressive effects of EtOH are manifested by decreased serum testosterone, reduced testicular luteinizing hormone (LH) receptor numbers, lowered serum LH and pituitary beta-LH mRNA levels (in castrated animals), and impaired luteinizing hormone releasing hormone (LHRH) release from the hypothalamus. Increasing evidence has suggested that nitric oxide (NO) plays a role in regulation of the HPG axis. NO was shown to stimulate LHRH secretion from the hypothalamus and to have variable effects on LH release from the pituitary. At the gonadal level, NO is inhibitory to testosterone production. NO may directly inhibit some testicular steroidogenic enzymes. To investigate the effect of EtOH, NO, and their interaction on the male HPG axis, three NO synthase (NOS) inhibitors, N(G)-nitro-L-arginine methyl ester, N(G)-nitro-L-arginine, and 7-nitro indazole were used to study overall HPG function in the presence and absence of EtOH. Animals were given intraperitoneal injections of saline, EtOH, various NOS inhibitors, or EtOH, along with NOS inhibitors 2 hr before sacrifice. Serum testosterone and LH concentrations, pituitary beta-LH mRNA levels, hypothalamic LHRH mRNA levels, and LHRH content were determined. It was found that blocking NOS by these NOS inhibitors prevented EtOH-induced suppression of testosterone and, in some cases, serum LH. However, this was not accompanied by concurrent changes with NOS blockade on LHRH mRNA, hypothalamic pro-LHRH or LHRH content or pituitary LH beta mRNA levels. It appears that the protective effect of NOS blockade was largely, although not completely, due to a direct effect at the gonadal level.  相似文献   

15.
CRH regulates POMC gene expression and subsequent ACTH biosynthesis and release. In sheep, the preterm rise in fetal plasma ACTH commences at approximately 125 days gestation (dGA; 147 dGA = term), preceding the initiation of adrenocortical steroidogenesis. We hypothesized that an increase in CRH expression in the hypothalamic paraventricular nucleus (PVN) and POMC expression in the anterior pituitary in the late gestation sheep fetus may precede adrenal cortex maturation. Fetal sheep were obtained at 105-107 (n = 4), 128-130 (n = 5), and 138-140 (n = 4) dGA. Hypothalami were cryosectioned and subjected to in situ hybridization for ovine CRH mRNA. In all dGA groups, expression of CRH mRNA was observed throughout the rostrocaudal extent of the fetal PVN. The midrostral region of the fetal PVN where the dorsal and ventral divisions of the rostral PVN merge to form a single structure was selected for quantification. The number of copies of CRH probe hybridized per micron 3 were determined to estimate the quantity of hybridized CRH mRNA; the mean estimated CRH mRNA copy number per micron 3 midrostral PVN were 0.064 +/- 0.012 (105-107 dGA), 0.237 +/- 0.048 (128-130 dGA), and 0.108 +/- 0.034 (138-140 dGA; mean +/- SEM copies per micron 3 PVN). CRH mRNA signal significantly increased between 105-107 and 128-130 dGA (P < or = 0.05); 138-140 dGA levels of mRNA were not different from either 105-107 or 128-140 dGA levels. Regional variation in CRH mRNA levels were observed within the midrostral PVN between groups; at 138-140 dGA, a population of lateral midrostral PVN neurons maintain CRH mRNA levels greater than 105-107 dGA (P < 0.05), similar to those at 128-130 dGA. Fetal anterior pituitary RNA was subjected to Northern analysis for POMC mRNA. POMC mRNA levels in fetal anterior pituitaries were 14.1 +/- 2.2 (105-107 dGA), 28.9 +/- 10.9 (128-130 dGA), and 43.2 +/- 6 (138-140 dGA; mean +/- SEM arbitrary units). A significant increase (P < or = 0.05) was observed at 138-140 dGA compared to levels at 105-107 dGA. We conclude CRH mRNA levels in the fetal PVN increase coincident with increased POMC gene expression and the late gestation rise in fetal plasma ACTH. We speculate that a neuroendocrine stimulus at the fetal PVN may precipitate increased levels of CRH mRNA, initiating the maturation of the fetal hypothalamic-hypophyseal-adrenal axis, thus inducing the events of labor and delivery in sheep.  相似文献   

16.
1. Nitric oxide (NO) is formed by neuronal NO synthase (nNOS) and acts as a non-conventional neurotransmitter in the brain. A growing body of evidence supports the hypothesis that NO acts to decrease sympathetic output to the periphery; these effects may occur at several autonomic sites. The present review describes studies from our laboratory that address this hypothesis. 2. Restraint stress activates putative NO-producing neurons in many autonomic centres: preoptic area, medial septum, amygdala, hypothalamus, including the paraventricular nucleus (PVN), raphe nuclei, nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM). These results suggest that NO is directly or indirectly involved in regulating sympathetic output to the periphery. 3. Systemic angiotensin II (AngII) activates putative NO-producing neurons in the PVN. These neurons may be activated either by the increases in arterial pressure that accompany AngII injections or due to activation of AngII-containing neural pathways. 4. Hypotension is associated with the activation of putative NO-producing PVN neurons, small numbers of which also project to the NTS or VLM. As the majority of activated neurons is in the magnocellular division, NO production may be related to the production of vasopressin. 5. Adult spontaneously hypertensive rats (SHR) show increased gene expression of nNOS in the hypothalamus, dorsal medulla and caudal VLM. These differences are not present in young prehypertensive SHR, suggesting that the changes in gene expression in adult rats are associated with the increased sympathetic nerve activity found in these rats. 6. Gene expression of nNOS is altered in the hypothalamus and caudal VLM of renal hypertensive rats at 3 and 6 weeks after surgical induction of hypertension. Contrasting results at the two time points may be due to differing underlying physiological processes that characterize the two stages of renal hypertension. 7. Nitric oxide may affect sympathetic output through several possible mechanisms. These include affecting production of the second messenger cGMP and interactions with more classical neurotransmitters or with neurohormonal systems in the brain.  相似文献   

17.
In this review we analyze the morphologic changes, hypothalamic-pituitary-adrenal (HPA) axis functions, glucocorticoid (GC) receptors, and steroidogenic enzyme activities in both animals and humans during aging. In rodent studies, older animals tend to show: 1) hypertrophy of adrenal zona fasciculata (ZF) cells; 2) neuronal loss in the hypothalamic area; 3) loss of GC receptors in the hippocampus; 4) raised circulating adrenocorticotropic hormone (ACTH) and GC levels, and increased release of corticotropin-releasing hormone from the hypothalamus; 5) reduced suppression of endogenous GC secretion after administration of dexamethasone; 6) decreased attenuation of response to chronic stress; and 7) increased activity of P450scc and 21-hydroxylase. According to the GC cascade hypothesis, stress and GCs facilitate the aging process in rats. Stress induces downregulation of GC receptors in the hippocampus, then impairs GC feedback on stress-induced HPA axis activation. Finally, an increase in the basal level of corticosterone and extended GC secretion following stress occurs. Because activation of the hippocampus decreases HPA axis function, the unrestrained elevation of GC concentration and the reduction in the level of GC receptors in the hippocampus may gradually weaken the feedback mechanisms and halt the response to stress. In humans, there are conflicting reports of HPA axis function during aging, so it is difficult to make a final conclusion regarding the relationship between aging and HPA axis function.  相似文献   

18.
The adrenal gland plays a pivotal role in the stress response since this response involves the hypothalamic-pituitary-adrenal axis (HPAA) and the sympatho-adrenomedullary system (SAMS) as its two principal components. An important relation between the immune system and the other stress response systems is also centered on the adrenal gland. It is well known that the cortex secretes glucocorticoids while the medulla secretes epinephrine, two of the major effects of the stress response. Some other aspects, however, also deserve special consideration: The paracrine effects of the cortical secretion on the medullary cells through the special irrigation system of the gland and reciprocally the influence of the medulla upon the cortex, either by direct close contact or by local innervation. The influence of vascular events also needs to be considered as well as the existence of some local hormonal axis such as those resulting from the local production of renin or CRH in adrenal cells. Some other cells such as mast cells, macrophages and endothelial cells seem to play a role in the regulation of the adrenal cortex and hence in the tuning of the stress response. Stressors stimulate the release of CRH from the hypothalamic paraventricular nucleus inducing the secretion of ACTH from the pituitary and that of corticosteroids from the adrenal cortex. Through the activation of the sympathetic system the adrenal can be stimulated even before adequate levels of ACTH are reached. In conditions of chronic stress the adrenal cortex undergoes an adaptation that allows the hypersecretion of glucocorticoids to occur even without the increment of ACTH.  相似文献   

19.
Behavioral and electrophysiological evidence indicates that the biological clock in the hypothalamic suprachiasmatic nuclei (SCN) can be reset at night through release of glutamate from the retinohypothalamic tract and subsequent activation of nitric oxide synthase (NOS). However, previous studies using NADPH-diaphorase staining or immunocytochemistry to localize NOS found either no or only a few positive cells in the SCN. By monitoring conversion of L-[3H]arginine to L-[3H]-citrulline, this study demonstrates that extracts of SCN tissue exhibit NOS specific activity comparable to that of rat cerebellum. The enzymatic reaction requires the presence of NADPH and is Ca2+/calmodulin-dependent. To distinguish the neuronal isoform (nNOS; type I) from the endothelial isoform (type III), the enzyme activity was assayed over a range of pH values. The optimal pH for the reaction was 6.7, a characteristic value for nNOS. No difference in nNOS levels was seen between SCN collected in day versus night, either by western blot or by enzyme activity measurement. Confocal microscopy revealed for the first time a dense plexus of cell processes stained for nNOS. These data demonstrate that neuronal fibers within the rat SCN express abundant nNOS and that the level of the enzyme does not vary temporally. The distribution and quantity of nNOS support a prominent regulatory role for this nitrergic component in the SCN.  相似文献   

20.
The mechanism regulating pituitary CRH receptors during stress was studied by analysis of the changes in CRH receptor messenger RNA (mRNA) and CRH binding after acute and repeated stress and CRH and vasopressin (VP) administration in intact and adrenalectomized rats. Acute stress caused time- and stress type-dependent changes in pituitary CRH receptor expression. In situ hybridization studies showed biphasic changes in CRH receptor mRNA after immobilization stress for 1 h and decreases by 2 h (P < 0.01). Increases (P < 0.01) were seen 4 and 8 h after the initiation of the stress, and a return to near basal levels by 12 and 18 h. A different pattern, with a decrease by 4 h (P < 0.01) and levels similar to controls after 12 and 18 h, was observed after a single ip injection of hypertonic saline (1.5 M NaCl). Binding autoradiography showed significant increases in pituitary CRH binding 4, 10, and 12 h after immobilization stress, but significant decreases 4, 12, and 18 h after ip hypertonic saline. In contrast, repeated immobilization or ip hypertonic saline for 8 or 14 days increased pituitary CRH receptor mRNA, and CRH binding was decreased. To determine the role of hypothalamic CRH and VP on these stress-induced changes, rats were injected for 14 days with CRH, VP, or their combination at doses mimicking stress levels in pituitary portal circulation (1 microgram/day sc). Repeated injection of CRH or VP increased CRH receptor mRNA and CRH binding (P < 0.05). CRH receptor mRNA levels further increased after combined administration of CRH and VP (P < 0.01), but CRH binding showed a tendency to decrease. The role of glucocorticoids on CRH receptor regulation was studied by analysis of the effects of stress on CRH receptor mRNA and CRH binding in adrenalectomized (ADX) rats with and without corticosterone replacement in the drinking water. Although in 6-day ADX rats pituitary CRH receptor mRNA levels were markedly reduced after acute immobilization, glucocorticoid replacement restored the stimulatory effect of stress to levels observed in intact rats. Similarly, a single sc injection of CRH (1 microgram) decreased CRH receptor mRNA in ADX rats but not in glucocorticoid-replaced ADX rats. CRH binding showed the expected decrease after ADX and was unchanged after stress or CRH injection. The increased pituitary CRH receptor mRNA after stress suggests that stress-induced CRH receptor down-regulation is due to increased receptor occupancy and internalization rather than to a decrease in receptor synthesis. The data suggest that increased hypothalamic secretion of CRH and VP mediates the delayed up-regulatory effect of stress on CRH receptor mRNA, and that resting levels of glucocorticoids are required for this effect. In addition, increased VP levels are permissive for the down-regulation of CRH binding induced by chronic pituitary exposure to stress levels of CRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号