首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients on chronic hemodialysis often portray high serum [K+]. Although dietary excesses are evident in many cases, in others, the cause of hyperkalemia cannot be identified. In such cases, hyperkalemia could result from decreased potassium removal during dialysis. This situation could occur if alkalinization of body fluids during dialysis would drive potassium into the cell, thus decreasing the potassium gradient across the dialysis membrane. In 35 chronic hemodialysis patients, we compared two dialysis sessions performed 7 days apart. Bicarbonate or acetate as dialysate buffers were randomly assigned for the first dialysis. The buffer was switched for the second dialysis. Serum [K+], [HCO3-], and pH were measured in samples drawn before dialysis; 60, 120, 180, and 240 min into dialysis; and 60 and 90 min after dialysis. The potassium removed was measured in the dialysate. During the first 2 hr, serum [K+] decreased equally with both types of dialysates but declined more during the last 2 hr with bicarbonate dialysis. After dialysis, the serum [K+] rebounded higher with bicarbonate bringing the serum [K+] up to par with acetate. The lower serum [K+] through the second half of bicarbonate dialysis did not impair potassium removal (295.9 +/- 9.6 mmol with bicarbonate and 299.0 +/- 14.4 mmol with acetate). The measured serum K+ concentrations correlated with serum [HCO3-] and blood pH during bicarbonate dialysis but not during acetate dialysis. Alkalinization induced by bicarbonate administration may cause redistribution of K during bicarbonate dialysis but this does not impair its removal. The more marked lowering of potassium during bicarbonate dialysis occurs late in dialysis, when exchange is negligible because of a low gradient.  相似文献   

2.
A therapy-specific worsening of cardiovascular stability during bicarbonate dialysis (BD) with respect to acetate-free biofiltration (AFB) have been previously reported. We further investigated the impact of the 2 therapies on electrocardiographic parameters in order to gain novel insight into the cardiac responses. Holter ECG acquired during hypotension-free sessions (12 BD + 12 AFB) were retrospectively analyzed. R-R intervals were extracted from ECG recordings. An autoregressive spectral technique was used to compute low- and high-frequency (LF and HF) components of heart rate variability (HRV). QT interval duration was measured with a computer-assisted technique and corrected for HR. In BD the LF component of HRV after an initial increase was slowly depressed with respect to AFB (p < 0.05). QT duration showed a significant (p < 0.01) hemodialysis-induced reduction. QT shortening was more pronounced (p < 0.05) in BD than in AFB (-31 vs. -10 ms), even after correction for HR (p < 0.05). Cardiac electrical activity is significantly affected by the hemodialysis technique. The decrease in the LF component of HRV and the QT shortening are coherent with the worse cardiovascular tolerance observed in BD and with the hypothesis of an enhanced production of endogenous nitric oxide.  相似文献   

3.
Background: Cardiac arrhythmias are considered as one of the most important causes of mortality in patients on hemodialysis. Arrhythmias frequently occur in patients with chronic renal failure on regular hemodialysis with reported incidences varying from 30–48% of patients. These abnormalities can span from supraventricular to severe ventricular arrhythmia. There is an increased frequency of occurrence and clustering of arrhythmias around the dialysis time. Aim of the study: To detect the difference between acetate and bicarbonate dialysis as regard to the type and frequency of arrhythmia in those patients. Study design: This study was done on 20 male patients age 51–73, all have history of heart disease. Patients were divided into 2 equal groups using acetate in group 1 and bicarbonate in group 2. All patients were on regular hemodialysis (4 hours, thrice weekly). Careful history and clinical examination were done. Pre‐dialysis investigations included serum creatinine, blood urea nitrogen, serum sodium, potassium, calcium and phosphorus, serum albumin, hemoglobin, and arterial blood gases. Post‐dialysis serum potassium and arterial blood gases were measured. ECG and forty‐eight hours ambulatory monitor (Holter monitor)(before, during, and after hemodialysis, till the end of the dialysis day and throughout the following day) were performed. Results: Group 1 showed significantly less post‐dialysis supraventricular arrhythmias than in dialysis day (210.9 ± 236 and 62.3 ± 14.4), respectively. Significantly less ventricular arrhythmias in post‐dialysis than in dialysis day (30.7 ± 50.4, and 106.2 ± 128.4), respectively. While in Group 2 there were insignificant differences regarding supraventricular arrhythmias (21.9 ± 28.9 and 16.6 ± 36.3) and ventricular arrhythmias (22.9 + 7.8 and 29.6 + 12.8) in dialysis day than in post‐dialysis day. There was significantly higher frequency of supraventricular and ventricular arrhythmias in the dialysis day in acetate hemodialysis in comparison to bicarbonate hemodialysis. Conclusion: Bicarbonate hemodialysis is less arrhythmogenic in comparison to acetate hemodialysis and has better effect on the blood pH and greater degree of base repletion. Continuous ambulatory ECG recording (Holter) is a useful tool in detecting arrhythmias in dialysis patients.  相似文献   

4.
Magnesium is a crucial mineral, involved in many important physiological processes. Magnesium plays a role of maintaining myocardial electrical stability in hemodialysis patients. Intradialytic hypotension is a common complication of dialysis and it is more common with acetate dialysate. The significance of the intradialytic changes of magnesium and their relation to parathyroid hormone (PTH) level and calcium changes during dialysis, and their relation to hypotensive episodes during dialysis are interesting. The aim of this work is to investigate the intradialytic changes of serum magnesium in chronic hemodialysis patients with different hemodialysis modalities and the relation to other electrolytes and to PTH, and also the relation to intradialytic hypotension. The present study was conducted on 20 chronic renal failure patients. All patients were on regular hemodialysis thrice weekly 4 hr each using acetate dialysate (group I). To study the effect of an acetate-based dialysate vs. a bicarbonate-based dialysate on acute changes of magnesium, calcium, phosphorus, and PTH during a hemodialysis session, the same patients were shifted to bicarbonate dialysis (group II). All patients were subjected to full history and clinical examination, predialysis laboratory assessment of blood urea nitrogen (BUN), serum creatinine, albumin, and hemoglobin, serial assessment of magnesium, calcium, phosphorus, and parathyroid hormone at the start of the hemodialysis session, 2 hr later, and at the end of the session, blood pH, and electrocardiogram (ECG) presession and postsession. All patients were urged to fix their dry weight, diet, and current medications. None of the patients had diabetes, neoplasia, liver disease, or cachexia, nor had they been recently on magnesium-containing drugs or previously parathyroidectomized. Hemodialysis sessions were performed by volumetric dialysis machines using the same electrolyte composition. Magnesium level significantly increased in the bicarbonate group at the end of dialysis (0 hr: 2.73+/-0.87, 2 hr: 3.21+/-1.1, and at 4 hr: 5.73+/-1.45 mg/dL, p value <0.01), while it significantly decreased in the acetate group (0 hr: 3.00+/-0.58, 2 hr: 2.26+/-0.39, 4 hr: 1.97+/-0.33 mg/dL, p value <0.01). Calcium level significantly increased in the bicarbonate group (p=0.024) but not in the acetate group. Phosphorus level significantly decreased in both acetate and bicarbonate groups. PTH level did not significantly change in either group, p value > or =0.05. Blood pH significantly increased, changing from acidic to alkaline pH, with both modalities of hemodialysis. ECG showed no significant changes during sessions with either type of dialysate. Hypotension was significantly higher in group I compared with group II (p=0.01), and this hypotension was positively correlated with a decrease in serum magnesium level in group I. Intradialytic changes in serum magnesium have no correlation with intradialytic changes in serum calcium or with PTH level. However, it was significantly correlated with hypotension during the dialysis session, especially with acetate dialysate. Further investigations are needed to determine whether or not this is true in patients using bicarbonate dialysis.  相似文献   

5.
Severe hyperparathyroidism is a challenge on hemodialysis. The definition of dialysate calcium (Ca) is a pending issue with renewed importance in cases of individualized dialysis schedules and of portable home dialysis machines with low‐flow dialysate. Direct measurement of calcium mass transfer is complex and is imprecisely reflected by differences in start‐to‐end of dialysis Ca levels. The study was performed in a dialysis unit dedicated to home hemodialysis and to critical patients with wide use of daily and tailored schedules. The Ca‐phosphate (P)‐parathyroid hormone (PTH) profile includes creatinine, urea, total and ionized Ca, albumin, sodium, potassium, P, PTH levels at start, mid, and end of dialysis. “Severe” secondary hyperparathyroidism was defined as PTH > 300 pg/mL for ≥3 months. Four schedules were tested: conventional dialysis (polysulfone dialyzer 1.8–2.1 m2), with dialysate Ca 1.5 or 1.75 mmol/L, NxStage (Ca 1.5 mmol/L), and NxStage plus intradialytic Ca infusion. Dosages of vitamin D, calcium, phosphate binders, and Ca mimetic agents were adjusted monthly. Eighty Ca‐P‐PTH profiles were collected in 12 patients. Serum phosphate was efficiently reduced by all techniques. No differences in start‐to‐end PTH and Ca levels on dialysis were observed in patients with PTH levels < 300 pg/mL. Conversely, Ca levels in “severe” secondary hyperparathyroid patients significantly increased and PTH decreased during dialysis on all schedules except on Nxstage (P < 0.05). Our data support the need for tailored dialysate Ca content, even on “low‐flow” daily home dialysis, in “severe” secondary hyperparathyroid patients in order to increase the therapeutic potentials of the new dialysis techniques.  相似文献   

6.
Benefits of dialysate with greater calcium (Ca) concentration are reported in nocturnal hemodialysis (NHD) to prevent Ca depletion and subsequent hyperparathyroidism. Studies with patients dialyzing against 1.25 mmol/L Ca baths demonstrate increases in alkaline phosphatase (ALP) and parathyroid hormone (PTH) and increasing dialysate Ca subsequently corrects this problem. However, whether 1.5 or 1.75 mmol/L dialysate Ca is most appropriate for NHD is yet to be determined, and differences in the effect on mineral metabolism of daily vs. alternate daily NHD have also not been well defined. We retrospectively analyzed mineral metabolism in 48 patients, from 2 institutions (30 at Monash and 18 at Geelong), undergoing home NHD (8 hr/night, 3.5-6 nights/week) for a minimum of 6 months. Thirty-seven patients were dialyzed against 1.5 mmol/L Ca bath and 11 patients against 1.75 mmol/L. We divided patients into 4 groups, based on dialysate Ca and also on the hours per week of dialysis, <40 (1.5 mmol/L, n=29 and 1.75 mmol/L, n=8) or > or =40 (n=4 and 7). We compared predialysis and postdialysis serum markers, time-averaged over a 6-month period, and the administration of calcitriol and Ca-based phosphate binders between 1.5 and 1.75 mmol/L Ca dialysate groups. Baseline characteristics between all groups were similar, with a slightly longer, but nonsignificant, duration of NHD in both 1.75 mmol/L dialysate groups compared with 1.5 mmol/L. The mean predialysis Ca, phosphate, and Ca x P were similar between the 1.5 and 1.75 mmol/L groups, regardless of NHD hr/week. Postdialysis Ca was significantly greater, with 1.75 vs. 1.5 mmol/L in those dialyzing <40 hr/week (2.64+/-0.19 vs. 2.50+/-0.12 mmol/L, p=0.046), but postdialysis Ca x P were similar (2.25+/-0.44 vs. 2.16+/-0.29 mmol(2)/L(2), p=0.60). Parathyroid hormone was also lower with 1.75 vs. 1.5 mmol/L baths in the <40 hr/week groups (31.99+/-26.99 vs. 14.47+/-16.36 pmol/L, p=0.03), although this difference was not seen in those undertaking NHD > or =40 hr/week. Hemoglobin, ALP, and albumin were all similar between groups. There was also no difference in vitamin D requirement when using 1.75 mmol/L compared with the 1.5 mmol/L dialysate. Multivariate analysis to determine independent predictors of postdialysis serum Ca showed a statistically significant positive association with predialysis Ca, dialysate Ca, and total NHD hr/week. An elevated dialysate Ca concentration is required in NHD to prevent osteopenia but differences in serum markers of mineral metabolism between 1.5 and 1.75 mmol/L Ca dialysate in NHD in our study were few. This was similar for patients undertaking NHD <40 or > or =40 hr/week, although differences in the frequency of NHD may also be as important as dialysate Ca with regard to serum Ca levels. With concerns that prolonged higher Ca levels contribute to increased cardiovascular mortality, the optimal Ca dialysate bath is still unknown and further studies addressing bone metabolism with larger NHD numbers are required.  相似文献   

7.
Sudden cardiac death is the most common cause of death in dialysis patients and is usually preceded by sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation. A variety of risk factors have been identified that predispose the sudden cardiac arrest and sudden cardiac death in dialysis patients. Primary prevention of sudden cardiac arrest in dialysis patients may be accomplished by avoiding the use of low potassium dialysate. Pharmacotherapy with beta-blockers angiotensin converting enzyme inhibitors and angiotensin receptor blockers and use of implantable cardioverter defibrillators (ICDs) may also prevent sudden cardiac arrest and sudden cardiac death in high-risk dialysis patients. Secondary prevention of sudden cardiac death may be accomplished by similar pharmacotherapy and by the use of ICDs. Indications for ICD use in dialysis patients are similar to those for nondialysis patients; however, survival rates following ICD implantation in dialysis patients are substantially lower than in non-dialysis patients.  相似文献   

8.
9.
10.
Hypophosphatemia is observed in patients undergoing nocturnal hemodialysis. Phosphate is commonly added to the dialysate acid bath, but systematic evaluation of the safety and reliability of this strategy is lacking. The objectives of this study were 4‐fold. First, we determined whether predictable final dialysate phosphate concentrations could be achieved by adding varying amounts of Fleet® enema. Second, we assessed the stability of calcium (Ca) and phosphate dialysate levels under simulated nocturnal hemodialysis conditions. Third, we assessed for Ca‐phosphate precipitate. Finally, we evaluated whether dialysate containing Fleet® enema met the current sterility standards. We added serial aliquots of enema to 4.5 L of dialysate acid concentrate and proportioned the solution on Gambro and Althin/Baxter dialysis machines for up to 8 hours. We measured dialysate phosphate, Ca, pH, and bicarbonate concentrations at baseline, and after simulated dialysis at 4 and 8 hours. We evaluated for precipitation visually and by assessing optical density at 620 nm. We used inoculation of agar to detect bacteria and Pyrotell reaction for endotoxin. For every 30 mL of Fleet® (1.38 mmol/mL of phosphate) enema added, the dialysate phosphate concentration increased by 0.2 mmol/L. There were no significant changes in dialysate phosphate, Ca, pH, and bicarbonate concentrations over 8 hours. No precipitate was observed in the dialysate by optical density measures at 620 nm for additions of up to 90 mL of enema. Bacterial and endotoxin testing met sterility standards. The addition of Fleet® enema to dialysate increases phosphate concentration in a predictable manner, and no safety problems were observed in our in vitro studies.  相似文献   

11.
A patient on hemodialysis for end-stage renal disease secondary to diabetic nephropathy was admitted in a coma with Kussmaul breathing and hypertension (232/124 mmHg). She had extreme hyperglycemia (1884 mg/dL), acidosis (total CO(2) 4 mmol/L), hyperkalemia (7.2 mmol/L) with electrocardiographic abnormalities, and hypertonicity (330.7 mOsm/kg). Initial treatment with insulin drip resulted in a decrease in serum potassium to 5.3 mmol/L, but no significant change in mental status or other laboratory parameters. Hemodialysis of 1.75 hours resulted in rapid decline in serum glucose and tonicity and rapid improvement of the acidosis, but no change in mental status, which began to improve slowly after the hemodialysis was stopped, but with ongoing treatment with continuous insulin infusion. The rate of decline in tonicity during hemodialysis (14.5 mOsm/kg/h) was high, raising concerns about neurological complications. In this case, extreme hyperglycemia with ketoacidosis, hyperkalemia, and coma developing in a hemodialysis patient responded to insulin infusion. Monitoring of the clinical status and the pertinent laboratory values is required to assess the need for other therapeutic measures including volume and potassium replacement and emergency dialysis. The indications for and risks of emergency dialysis in this setting are not clearly defined.  相似文献   

12.
"NxStage System One" is increasingly used for daily home hemodialysis. The ultrapure dialysate volumes are typically between 15 L and 30 L per dialysis, substantially smaller than the volumes used in conventional dialysis. In this study, the impact of the use of low dialysate volumes on the removal rates of solutes of different molecular weights and volumes of distribution was evaluated. Serum measurements before and after dialysis and total dialysate collection were performed over 30 times in 5 functionally anephric patients undergoing short-daily home hemodialysis (6 d/wk) over the course of 8 to 16 months. Measured solutes included β2 microglobulin (β2M), phosphorus, urea nitrogen, and potassium. The average spent dialysate volume (dialysate plus ultrafiltrate) was 25.4±4.7 L and the dialysis duration was 175±15 min. β2 microglobulin clearance of the polyethersulfone dialyzer averaged 53±14 mL/min. Total β2M recovered in the dialysate was 106±42 mg per treatment (n=38). Predialysis serum β2M levels remained stable over the observation period. Phosphorus removal averaged 694±343 mg per treatment with a mean predialysis serum phosphorus of 5.2±1.8 mg/dL (n=34). Standard Kt/V averaged 2.5±0.3 per week and correlated with the dialysate-based weekly Kt/V. Weekly β2M, phosphorus, and urea nitrogen removal in patients dialyzing 6 d/wk with these relatively low dialysate volumes compared favorably with values published for thrice weekly conventional and with short-daily hemodialysis performed with machines using much higher dialysate flow rates. Results of the present study were achieved, however, with an average of 17.5 hours of dialysis per week.  相似文献   

13.
An elevated calcium x phosphate product (Ca x P) is an independent risk factor for vascular calcification and cardiovascular death in dialysis patients. More physiological dialysis in patients undergoing nocturnal hemodialysis (NHD) has been shown to produce biochemical advantages compared with conventional hemodialysis (CHD) including superior phosphate (P) control. Benefits of dialysate with greater calcium (Ca) concentration are also reported in NHD to prevent Ca depletion and subsequent hyperparathyroidism, but there are concerns that a higher dialysate Ca concentration may contribute to raised serum Ca levels and greater Ca x P and vascular disease. The NHD program at our unit has been established for 4 years, and we retrospectively analyzed Ca and P metabolism in patients undergoing NHD (8-9 h/night, 6 nights/week). Our cohort consists of 11 patients, mean age 49.3 years, who had been on NHD for a minimum of 12 months, mean 34.3 months. Commencement was with low-flux (LF) NHD and 1.5 mmol/L Ca dialysate concentration, with conversion to high-flux (HF) dialyzers after a period (mean duration 18.7 months). We compared predialysis serum albumin, intact parathyroid hormone, P, total corrected Ca, and Ca x P at baseline on CHD, after conversion to LF NHD and during HF NHD. We also prospectively measured bone mineral density (BMD) on all patients entering the NHD program. Bone densitometry (DEXA) scans were performed at baseline (on CHD) and yearly after commencement of NHD. With the introduction of HF dialyzers, the Ca dialysate concentration was concurrently raised to 1.75 mmol/L after demonstration on DEXA scans of worsening osteopenia. Analysis of BMD, for all parameters, revealed a decrease over the first 12 to 24 months (N = 11). When the dialysate Ca bath was increased, the median T and Z scores subsequently increased (data at 3 years, N = 6). The mean predialysis P levels were significantly lower on LF NHD vs. CHD (1.51 vs. 1.77 mmol/L, p = 0.014), while on HF NHD P was lower again (1.33 mmol/L, p = 0.001 vs. CHD). Predialysis Ca levels decreased with conversion from CHD to LF NHD (2.58 vs. 2.47 mmol/L, p = 0.018) using a 1.5 mmol/L dialysate Ca concentration. The mean Ca x P on CHD was 4.56 compared with a significant reduction of 3.74 on LF NHD (p = 0.006) and 3.28 on HF NHD (p = 0.001 vs. CHD), despite the higher dialysate Ca in the latter. We conclude that an elevated dialysate Ca concentration is required to prevent osteopenia. With concerns that prolonged higher Ca levels contribute to increased cardiovascular mortality, the optimal Ca dialysate bath is still unknown. Better P control on NHD, however, reduces the overall Ca x P, despite the increased Ca concentration, therefore reducing the risk of vascular calcification.  相似文献   

14.
Introduction: The dialysate bicarbonate (DB) influences the acid‐base balance in dialysis patients. Very low and high serum bicarbonate (SB) have been related with a higher mortality. Acid‐base balance also has been associated with hemodynamic effects in these patients. The trial aim was to compare the effect of DB concentration variation on SB levels in maintenance hemodiafiltration (HDF) patients and the effect on intradialytic hypotension and interdialytic weight gain. Methods: A prospective study, with 9 months of follow‐up, involving 93 patients, divided in two groups: group 1 and group 2 with a DB of 34 mmol/L and 30 mmol/L, respectively, with monitoring of pre and post HDF SB, intradialytic hypotension, and interdialytic weight gain. Findings: Pre dialysis SB was higher in group 1: median concentration of 22.7 mmol/L vs. 21.1 mmol/L (P < 0.001). Post dialysis SB levels were higher in group 1: median concentration of 28.0 mmol/L vs. 25.3 mmol/L (P < 0.001). Post dialysis SB in alkalotic range was only detected in group 1 (51.2% of the patients). No significant differences were detected in intradialytic hypotension rate [28.0 vs. 27.4 episodes per 1000 sessions in group 1 and 2, respectively, (P = 0.906)] or in average interdialytic weight gain [2.9% vs. 3.0% in group 1 and 2, respectively, (P = 0.710)]. Discussion: DB of 30 mmol/L appears to be associated with SB levels closer to physiological levels than 34 mmol/L. The bicarbonate dialysate, in the tested concentrations, did not appear to have a significant impact on intradialytic hypotension and interdialytic weight gain in maintenance HDF patients.  相似文献   

15.
Hypotension is the most common complication of outpatient hemodialysis sessions, with a reported prevalence of 4% to 31%, depending on which definition has been used and whether patients are symptomatic and nursing interventions were required. Dialysis centers which mix the dialysate in the dialysis machine have the opportunity to individualize the composition of the dialysate for patients. This permits a choice of dialysate sodium, potassium, calcium, magnesium, bicarbonate, acetate, and citrate concentrations and temperature. Studies have reported a higher intradialytic systolic blood pressure and fewer episodes of intradialytic hypotension when using a higher dialysate sodium, calcium, magnesium concentrations and lower temperature, but no clinical advantage for changing the potassium, bicarbonate, or citrate for acetate concentrations. The introduction of newer technology allowing real time measurements of plasma electrolyte concentrations will potentially allow changing the dialysate composition to reduce the risk of intradialytic hypotension without increasing the risk of positive electrolyte balances.  相似文献   

16.
In hemodialysis (HD) patients, mineral metabolism (MM) disorders have been associated with an increased mortality rate. We report the evolution of MM parameters in a stable HD population undergoing long hemodialysis by performing an annual cross-sectional analysis for every year from 1994 to 2008. The therapeutic strategy has changed: the dialysate calcium concentration has decreased from a mean of 1.7 ± 0.1 to 1.5 ± 0.07 mmol/L and has been adapted to parathyroid hormone serum levels (from 1 to 1.75 mmol/L). The use of calcium-based and aluminum-based phosphate binders has decreased and they have been replaced by sevelamer; alfacalcidol has partly been replaced by native vitamin D. The percentage of patients with a parathyroid hormone serum level between 150 and 300 pg/mL has increased from 9% to 67% (P<0.001); the percentage of patients with phosphataemia between 1.15 and 1.78 mmol/L has increased from 39% to 84% (P<0.001). The percentage of those with albumin-corrected calcemia between 2.1 and 2.37 mmol/L has increased from 29% to 61% (P<0.001), and that of patients with a calcium-phosphorous product (Ca × P) level >4.4 mmol/L decreased from 8.8% to 2% (P=0.02). Although patients undergo long and intensive HD treatment, MM disorders are common. However, an appropriate strategy, mostly consisting of native vitamin D supplementation, progressive replacement of calcium-based phosphate binders with non–calcium-based ones, and individualization of dialysis session duration and dialysate calcium concentration, would result in a drastic improvement.  相似文献   

17.
18.
19.
20.
As maintenance hemodialysis patients are exposed to large quantities of dialysis water, any contamination of it might be reflected in plasma levels. We present a series of cases due to such a contamination. Six maintenance hemodialysis patients dialyzing at the same peripheral hemodialysis facility presented to us over a short period of time with symptoms mimicking inadequate dialysis. Their blood urea and creatinine levels were not very high, but all the patients had hypermagnesemia [serum Mg levels = 1.8 (±0.3) mmol/L]. Except for one patient who had cardiac arrest at presentation, all patients improved after undergoing hemodialysis at our center [serum Mg at discharge = 0.86 (±0.01) mmol/L]. The origin of hypermagnesemia was traced to dialysis water contamination with magnesium due to inadequate maintenance of the water treatment system. Corrective measures improved the quality of water, and no further cases were reported from that center. Proper maintenance and periodic checks of the quality of water are central to the outcomes of maintenance hemodialysis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号