首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
For an improved monitoring of process parameters, it is generally desirable to have efficient designs of control charting structures. The addition of Shewhart control limits to the cumulative sum (CUSUM) control chart is a simple monitoring scheme sensitive to wide range of mean shifts. To improve the detection ability of the combined Shewhart–CUSUM control chart to off‐target processes, we developed the scheme using ranked set sampling instead of the traditional simple random sampling. We investigated the run length properties of the Shewhart–CUSUM with ranked set samples and compared their performance with certain established control charts. It is revealed that the proposed schemes offer better protection against different types of mean shifts than the existing counterparts including classical Shewhart, classical CUSUM, classical combined Shewhart–CUSUM, adaptive CUSUM, double CUSUM, three simultaneous CUSUM, combined Shewhart‐weighted CUSUM, runs rules‐based CUSUM and the mixed exponentially weighted moving average‐CUSUM. Applications on real data sets are also given to demonstrate the implementation simplicity of the proposed schemes Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This study analyzes the performance of combined applications of the Shewhart and cumulative sum (CUSUM) range R chart and proposes modifications based on well‐structured sampling techniques, the extreme variations of ranked set sampling, for efficient monitoring of changes in the process dispersion. In this combined scheme, the Shewhart feature enables quick detection of large shifts from the target standard deviation while the CUSUM feature takes care of small to moderate shifts from the target value. We evaluate the numerical performance of the proposed scheme in terms of the average run length, standard deviation of run length, the average ratio average run length, and average extra quadratic loss. The results show that the combined scheme can detect changes in the process that were small or large enough to escape detection by the lone Shewhart R chart or CUSUM R chart, respectively. We present a comparison of the proposed schemes with several dispersion charts for monitoring changes in process variability. The practical application of the proposed scheme is demonstrated using real industrial data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The cumulative sum (CUSUM) chart is a very effective control charting procedure used for the quick detection of small‐sized and moderate‐sized changes. It can detect small process shifts missed by the Shewhart‐type control chart, which is sensitive mainly to large shifts. To further enhance the sensitivity of the CUSUM control chart at detecting very small process disturbances, this article presents CUSUM control charts based on well‐structured sampling procedures, double ranked set sampling, median‐double ranked set sampling, and double‐median ranked set sampling. These sampling techniques significantly improve the overall performance of the CUSUM chart over the entire process mean shift range, without increasing the false alarm rate. The newly developed control schemes do not only dominate most of the existing charts but are also easy to design and implement as illustrated through an application example of real datasets. The control schemes used for comparison in this study include the conventional CUSUM chart, a fast initial response CUSUM chart, a 2‐CUSUM chart, a 3‐CUSUM chart, a runs rules‐based CUSUM chart, the enhanced adaptive CUSUM chart, the CUSUM chart based on ranked set sampling (RSS), and the single CUSUM and combined Shewhart–CUSUM charts based on median RSS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Maximum exponentially weighted moving average (MaxEWMA) control charts have attracted substantial interest because of their ability to simultaneously detect increases and decreases in both the process mean and the process variability. In this paper, we propose new MaxEWMA control charts based on ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts, respectively. The proposed MaxEWMA control charts are based on the best linear unbiased estimators obtained under ODRSS and OIDRSS schemes. Extensive Monte Carlo simulations are used to estimate the average run length and standard deviation of the run length of the proposed MaxEWMA control charts. The run length performances and the diagnostic abilities of the proposed MaxEWMA control charts are compared with that of their counterparts based on simple random sampling (SRS), ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling schemes (OIRSS) schemes, that is, MaxEWMA‐SRS, maximum generally weighted moving average (MaxGWMA‐SRS), MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. It turns out that the proposed MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts perform uniformly better than the MaxEWMA‐SRS, MaxGWMA‐SRS, MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts in simultaneous detection of shifts in the process mean and variability. An application to real data is also provided to illustrate the implementations of the proposed and existing MaxEWMA control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are potentially powerful statistical process monitoring tools because of their excellent speed in detecting small to moderate persistent process shifts. Recently, synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control charts have been proposed based on simple random sampling (SRS) by integrating the EWMA and CUSUM control charts with the conforming run length control chart, respectively. These synthetic control charts provide overall superior detection over a range of mean shift sizes. In this article, we propose new SynEWMA and SynCUSUM control charts based on ranked set sampling (RSS) and median RSS (MRSS) schemes, named SynEWMA‐RSS and SynEWMA‐MRSS charts, respectively, for monitoring the process mean. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed control charts. The run length performances of these control charts are compared with their existing powerful counterparts based on SRS, RSS and MRSS schemes. It turns out that the proposed charts perform uniformly better than the Shewhart, optimal synthetic, optimal EWMA, optimal CUSUM, near‐optimal SynEWMA, near‐optimal SynCUSUM control charts based on SRS, and combined Shewhart‐EWMA control charts based on RSS and MRSS schemes. A similar trend is observed when constructing the proposed control charts based on imperfect RSS schemes. An application to a real data is also provided to demonstrate the implementations of the proposed SynEWMA and SynCUSUM control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The combination of Shewhart control charts and an exponentially weighted moving average (EWMA) control charts to simultaneously monitor shifts in the mean output of a production process has proven very effective in handling both small and large shifts. To improve the sensitivity of the control chart to detect off‐target processes, we propose a combined Shewhart‐EWMA (CSEWMA) control chart for monitoring mean output using a more structured sampling technique, i.e. ranked set sampling (RSS) instead of the traditional simple random sampling. We evaluated the performance of the proposed charts in terms of different run length (RL) properties including average RL, standard deviation of the RL, and percentile of the RL. Comparisons of these charts with some existing control charts designed for monitoring small, large, or both shifts revealed that the RSS‐based CSEWMA charts are more sensitive and offer better protection against all types of shifts than other schemes considered in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Exponentially weighted moving average (EWMA) control charts have received considerable attention for detecting small changes in the process mean or the process variability. Several EWMA control charts are constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring changes in the process dispersion. In this paper, we propose new EWMA control charts for monitoring process dispersion based on the best linear unbiased absolute estimators obtained under simple random sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA‐SRS and EWMA‐RSS control charts. The performance of the proposed EWMA control charts is evaluated in terms of the average run length and standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control charts are then compared with their existing counterparts for detecting increases and decreases in the process dispersion. It turns out that the EWMA‐RSS control chart performs uniformly better than its analogues for detecting overall changes in process dispersion. Moreover, the EWMA‐SRS chart significantly outperforms the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain the construction and operations of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The statistical performance of traditional control charts for monitoring the process shifts is doubtful if the underlying process will not follow a normal distribution. So, in this situation, the use of a nonparametric control charts is considered to be an efficient alternative. In this paper, a nonparametric exponentially weighted moving average (EWMA) control chart is developed based on Wilcoxon signed‐rank statistic using ranked set sampling. The average run length and some other associated characteristics were used as the performance evaluation of the proposed chart. A major advantage of the proposed nonparametric EWMA signed‐rank chart is the robustness of its in‐control run length distribution. Moreover, it has been observed that the proposed version of the EWMA signed‐rank chart using ranked set sampling shows better detection ability than some of the competing counterparts including EWMA sign chart, EWMA signed‐rank chart, and the usual EWMA control chart using simple random sampling scheme. An illustrative example is also provided for practical consideration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for detecting changes in both process mean and process variability. In this paper, we propose an improved MaxEWMA control charts based on ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS) schemes for simultaneous detection of both increases and decreases in the process mean and/or variability, named MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. These MaxEWMA control charts are based on the best linear unbiased estimators of location and scale parameters obtained under ORSS and OIRSS methods. Extensive Monte Carlo simulations have been used to estimate the average run length and standard deviation of run length of the proposed MaxEWMA control charts. These control charts are compared with their counterparts based on simple random sampling (SRS), that is, MaxEWMA‐SRS and MaxGWMA‐SRS control charts. The proposed MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts are able to perform better than the MaxEWMA‐SRS and MaxGWMA‐SRS control charts for detecting shifts in the process mean and dispersion. An application to real data is provided to illustrate the implementation of the proposed MaxEWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A New Chart for Monitoring Service Process Mean   总被引:1,自引:0,他引:1  
Control charts are demonstrated effective in monitoring not only manufacturing processes but also service processes. In service processes, many data came from a process with nonnormal distribution or unknown distribution. Hence, the commonly used Shewhart variable control charts are not suitable because they could not be properly constructed. In this article, we proposed a new mean chart on the basis of a simple statistic to monitor the shifts of the process mean. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed chart. Furthermore, an arcsine transformed exponentially weighted moving average chart was proposed because the average run lengths of this modified chart are more intuitive and reasonable than those of the mean chart. We would recommend the arcsine transformed exponentially weighted moving average chart if we were concerned with the proper values of the average run length. A numerical example of service times with skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the proposed charts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A new hybrid exponentially weighted moving average (HEWMA) control chart has been proposed in the literature for efficiently monitoring the process mean. In that paper, the computed variance of the HEWMA statistic was, unfortunately, not correct! In this discussion, the correct variance of the HEWMA statistic is given, and the run length characteristics of the HEWMA control chart are studied and explored. It is noticed that not only the superiority of the HEWMA control chart remains over the existing (considered before) charts but also the new results based on the corrected control limits are more profound and reflective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Exponentially weighted moving average (EWMA) control charts are mostly used to monitor the manufacturing processes. In this paper, we propose some improved EWMA control charts for detecting the random shifts in the process mean and process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS), named EWMA‐ORSS and EWMA‐OIRSS charts, respectively. Monte Carlo simulations are used to estimate the average run length, median run length and standard deviation of run length of the proposed EWMA control charts. It is observed that the EWMA‐ORSS mean control chart is able to detect the random shifts in the process mean substantially quicker than the Shewhart‐cumulative sum and the Shewhart‐EWMA control charts based on the RSS scheme. Both EWMA‐ORSS and EWMA‐OIRSS location charts perform better than the classical EWMA, hybrid EWMA, Shewhart‐EWMA and fast initial response‐EWMA charts. The EWMA‐ORSS dispersion control chart performs better than the simple random sampling based CS‐EWMA and other EWMA control charts in efficient detection of the random shifts that occur in the process variability. An application to real data is also given to explain the implementation of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号