首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heating of borage oil, either under vacuum as a model or during steam-vacuum deodorization, produces artifacts that are geometrical isomers of γ-linolenic acid (cis-6,cis-9,cis-12 18∶3 acid). In a first approach, we have studied the behavior of these fatty acids in the form of either methyl or isopropyl esters on two capillary columns (CP-Sil 88 and DB-Wax). From this study, it appears that the DB-Wax capillary column is the best suited analytical tool to study in some detail γ-linolenic acid geometrical isomers. In a second approach, the structure of these isomers was formally established by combining several analytical techniques: Argentation thin-layer chromatography, comparison of the equivalent chainlengths with those of isomers present in NO2-isomerized borage oil on two different capillary columns, partial hydrazine reduction, oxidative ozonolysis, gas chromatography coupled with mass spectrometry and gas chromatography coupled with Fourier transform infrared spectroscopy. The two main isomers that accumulate upon heat treatments are thetrans-6,cis-9,cis-12 andcis-6,cis-9,trans-12 18∶3 acids with minor amounts ofcis-6,trans-9,cis-12 18∶3 acid. One di-trans isomer, supposed to be thetrans-6,cis-9,trans-12 18∶3 acid, is present in low although noticeable amounts in some of the heated oils. The content of these artificial fatty acids increases with increasing temperatures and duration of heating. The degree of isomerization (DI) of γ-linolenic acid is less than 1% when the oil is deodorized at 200°C for 2 h. Heating at 260°C for 5 h increases the DI up to 74%. Isomerization of γ-linolenic acid resembles that of α-linolenic (cis-9,cis-12,cis-15 18∶3) acid in several aspects: The same kinds and numbers of isomers are formed, and similar degrees of isomerization are reached when the octadecatrienoic acids are heated under identical conditions. It seems that the reactivity of a double-bondvis-à-vis cis-trans isomerization is linked to its relative position, central or external, and not to its absolute position (Δ6, 9, 12 or 15).  相似文献   

2.
The contents of total trans FA of sunflower oils at different stages of refining processes were determined by capillary GLC. The contents of 18∶1, 18∶2, and 18∶3 trans acids were 0.22±0.03, 2.31±0.23, and 0.03±0.01%, respectively, in physically refined sunflower oils, and 0.05±0.01, 0.69±0.26, and 0.02±0.01%, respectively, in chemically refined sunflower oils. The total trans FA contents drastically increased at the end of the physical refining process. The total trans FA contents of chemically refined sunflower oils were <1%. Because of the high temperature applied in the last stage of physical refining, the content of total trans FA was higher than in chemically refined sunflower oils. The last-stage conditions should be carefully evaluated to reduce the formation of trans FA during physical refining.  相似文献   

3.
The purpose of this study was to evaluate the trans fatty acid (TFA) composition and the tocopherol content in vegetable oils produced in Mexico. Sample oils were obtained from 18 different oil refining factories, which represent 72% of the total refineries in Mexico. Fatty acids and TFA isomers were determined by gas chromatography using a 100-m fused-silica capillary column (SP-2560). Tocopherol content was quantified by normal-phase high-performance liquid chromatography using an ultraviolet detector and a LiChrosorb Si60 column (25 cm). Results showed that 83% of the samples corresponded to soybean oil. Seventy-two percent of the oils analyzed showed TFA content higher than 1%. Upon comparing the tocopherol contents in some crude oils to their corresponding deodorized samples, a loss of 40–56% was found. The processing conditions should be carefully evaluated in order to reduce the loss of tocopherols and the formation of TFA during refining.  相似文献   

4.
The geometrical and positional isomers of linoleic acid of a partially hydrogenated canola oil-based spread were isolated and identified. Through partial hydrazine reduction and mass spectral studies,cis-9,trans-13 octadecadienoic acid was identified as the major isomer. Other quantitatively important isomers characterized werecis-9,trans-12;trans-9,cis-12 andcis-9,cis-15. These four were also the major isomers in margarine based on common vegetable oils. A number of minor isomers were detected and some structures identified weretrans-9,trans-12;trans-8,cis-12;trans-8,cis-13;cis-8,cis-13;trans-9,cis-15;trans-10,cis-15 andcis-9,cis-13. The proportions of the various isomers are given for some margarines in the Canadian retail market. The amounts oftrans-9,trans-12 isomer in Canadian margarines were generally below 0.5% of the total fatty acids.  相似文献   

5.
The biorefining process under optimum conditions de-acidified the high-acid mohua oil by nearly 85% with considerable improvement of color. The process, in combination with alkali-refining, bleaching and deodorization, yielded excellent oil with respect to color, unsaponifiable matter content and triglyceride content. The combination of biorefining and physical refining significantly reduced the loss of oil, and the color, unsaponifiable matter and diglyceride content increased while triglyceride content decreased. The physical refining process alone, on the other hand, produced oil with considerably darker color, increased unsaponifiable matter and diglycerides, and decreased triglyceride. Biorefining followed by alkali-refining, bleaching and deodorizing steps or by physical refining can be regarded as a much better alternative refining process than the physical refining process alone for oils of high acidity.  相似文献   

6.
Trans FA (TFA), solid fat contents (SFC), and slip melting points of 12 different tub and stick margarines marketed in Turkey were examined in this study. No trans isomers were found in four margarines, which suggests they were formulated from interesterified or blended fats and oils. The products with no TFA generally had more short-chain saturated FA, which suggests coconut oil-based oil components. TFA content of the other 10 products varied from 7.7 to 37.8%. Compared to the products formulated in North America, Turkish margarines contain more TFA and have higher SFC.  相似文献   

7.
A Nicolet 410 Fourier (FTIR) spectrophotometer, equipped with a DGTS detector and a sample cell with NaCl windows (nominal pathlength=50 μm), was used for the development of an FTIR method for routine analysis of low trans levels in physically refined oils. The approach of the study differed from those previously described in that a separate calibration curve was established for each type of oil. Quantitation was established by use of Basic Quant Software® and by measuring the peak height at 967 cm?1 relative to a baseline drawn between 1002 and 932 cm?1. The slope of the different calibration curves established in six vegetable oils (soybean, corn, sunflower, high-oleic sunflower, low-erucic rapeseed, and high-erucic rapeseed) was close to 1 (0.9942–1.0041), and correlation coefficients (r 2) were rather good (0.9990–0.9999). FTIR spectra of 20 soybean oil samples were collected and quantitated with the different calibrations. Compared to previous reported literature data, increased accuracy (mean difference=0.05%; standard deviation of difference=0.11%) and reproducibility (r 2=0.09–0.12%) were obtained when the FTIR spectra were quantitated with a calibration curve based on 10 physically refined soybean oil samples.  相似文献   

8.
Two classes of vegetable oils, olive and sunflower, were processed by physical refining in a pilot plant with a capacity of up to 30 L by means of discontinuous deodorization, and distillates were recovered by condensing and freezing using steam and nitrogen as stripping gases. Two heating systems were evaluated in the deodorizer. In the first, the deodorizer oil and the distilled gases were heated so as to maintain the same temperature in both. In the second, only the oil was heated, resulting in a difference in temperature between the oil and the distilled gases. In addition, two different oil temperatures were evaluated for each stripping gas. By means of the first heating system, the deacidification time for both oils was reduced and the efficiency of the process was notably improved. On the other hand, the higher temperature had a negative influence over both parameters. For both heating systems the sterol contents did not suffer significant variations. Substantial variations in trans FA were not observed, and the composition of FA remained stable except for linoleic acid, which decreased, although more slowly than when the temperature was not maintained, as a result of the rapid formation of its trans FA.  相似文献   

9.
There are multiple adverse effects of trans fatty acids (TFA) that are produced by partial hydrogenation (i.e., manufactured TFA), on CVD, blood lipids, inflammation, oxidative stress, endothelial health, body weight, insulin sensitivity, and cancer. It is not yet clear how specific TFA isomers vary in their biological activity and mechanisms of action. There is evidence of health benefits on some of the endpoints that have been studied for some animal TFA isomers, such as conjugated linoleic acid; however, these are not a major TFA source in the diet. Future research will bring clarity to our understanding of the biological effects of the individual TFA isomers. At this point, it is not possible to plan diets that emphasize individual TFA from animal sources at levels that would be expected to have significant health effects. Due to the multiple adverse effects of manufactured TFA, numerous agencies and governing bodies recommend limiting TFA in the diet and reducing TFA in the food supply. These initiatives and regulations, along with potential TFA alternatives, are presented herein.  相似文献   

10.
This study presents the FA composition and trans FA (TFA) contents of different hydrogenated vegetable oils and blended fats marketed in Pakistan. Thirty-four vanaspati (vegetable ghee), 11 shortenings, and 11 margarines were analyzed. The contents of saturated FA, cis monounsaturated FA, and cis PUFA were in the following ranges: vanaspati 27.8–49.5, 22.2–27.5, 9.3–13.1%; vegetable shortenings 37.1–55.5, 15.8–36.0, 2.7–7.0%; and margarines 44.2–55.8, 21.7–39.9, 2.9–20.5%, respectively. Results showed significantly higher amounts of TFA in vanaspati samples, from 14.2 to 34.3%. Shortenings contained TFA proportions of 7.3–31.7%. The contents of TFA in hard-type margarines were in the range of 1.6–23.1%, whereas soft margarines contained less than 4.1% TFA.  相似文献   

11.
This study examined trans monounsaturated fatty acid contents in all margarines and shortenings marketed in Denmark, and in frying fats used by the fast-food restaurants Burger King and McDonald’s. Trans C18:1 content was 4.1±3.8% (g per 100 g fatty acids) in hard margarines, significantly higher than the content in soft margarines of 0.4±0.8%. Shortenings had an even higher content of trans C18:1, 6.7±2.3%, than the hard margarines. Margarines and shortenings with high contents of long-chain fatty acids had about 20% total trans monoenoic of which close to 50% were made up of trans long-chain fatty acids. Both fast-food frying fats contained large amounts of trans C18:1, 21.9±2.9% in Burger King and 16.6±0.4% in McDonald’s. In Denmark the per capita supply of trans C18:1 from margarines and shortenings and frying fats has decreased steadily during recent years. The supply of trans C18:1 from margarines and shortenings in the Danish diet is now 1.1 g per day.  相似文献   

12.
Human milk was obtained from 97 healthy lactating women from five different regions in China. Twenty-four hour dietary questionnaire identified the foods consumed that showed distinct differences in food types between cities. The southern and central regions had higher levels of total trans fatty acids (TFA) and conjugated linoleic acids (CLA) in human milk than the northern region. The major isomers in human milk from the northern region were vaccenic and rumenic acids, whereas the other regions had a random distribution of these isomers. This was consistent with the isomer distribution in the refined vegetable oils used and their increased formation during high temperature stir-frying. The human milk composition showed little evidence that partially hydrogenated fats were consumed, except eight mothers in Guangzhou who reported eating crackers, plus four other mothers. The TFA concentration in these human milk samples was higher (2.06–3.96%). The amount of n-6 (1.70–2.24%) and n-3 (0.60–1.47%) highly unsaturated fatty acids (HUFA) in human milk and the resultant ratio (1.43–2.95) showed all mothers in China had an adequate supply of HUFA in their diet. Rapeseed oil was consumed evidenced by erucic acids in human milk. The levels of erucic acid were below internationally accepted limits for human consumption. The levels of undesirable TFA and CLA isomers in human milk are a concern. Efforts to decrease the practice of high temperature stir-frying using unsaturated oils, and a promotion to increase consumption of dairy and ruminant products should be considered in China.  相似文献   

13.
This study examined trans monounsaturated fatty acid contents in all margarines and shortenings marketed in Denmark, and in frying fats used by the fast-food restaurants Burger King and McDonald’s. Trans C18:1 content was 4.1±3.8% (g per 100 g fatty acids) in hard margarines, significantly higher than the content in soft margarines of 0.4±0.8%. Shortenings had an even higher content of trans C18:1, 6.7±2.3%, than the hard margarines. Margarines and shortenings with high contents of long-chain fatty acids had about 20% total trans monoenoic of which close to 50% were made up of trans long-chain fatty acids. Both fast-food frying fats contained large amounts of trans C18:1, 21.9±2.9% in Burger King and 16.6±0.4% in McDonald’s. In Denmark the per capita supply of trans C18:1 from margarines and shortenings and frying fats has decreased steadily during recent years. The supply of trans C18:1 from margarines and shortenings in the Danish diet is now 1.1 g per day.  相似文献   

14.
Oil was extracted from soybeans, degummed, alkalirefined and bleached. The oil was heated at 160, 180, 200, 220 and 240°C for up to 156 h. Fatty acid methyl esters were prepared by boron trifluoride-catalyzed transesterification. Gas-liquid chromatography with a cyanopropyl CPSil88 column was used to separate and quantitate fatty acid methyl esters. Fatty acids were identified by comparison of retention times with standards and were calculated as area % and mg/g oil based on 17:0 internal standard. The rates of 18:3ω3 loss and 18:3 Δ9-cis, Δ12-cis, Δ15-trans (18:3c,c,t) formation were determined, and the activation energies were calculated from Arrhenius plots. Freshly prepared soy oil had 10.1% 18:3ω3 and no detectable 18:3c,c,t. Loss of 18:3ω3 followed apparent first-order kinetics. The first-order rate constants ranged from .0018±.00014 min−1 at 160°C to .083±.0033 min−1 at 240°C. The formation of 18:3c,c,t did not follow simple kinetics, and initial rates were estimated. The initial rates (mg per g oil per h) of 18:3c,c,t formation ranged from 0.0031±0.0006 at 160°C to 2.4±.24 at 240°C. The Arrhenius activation energy for 18:3ω3 loss was 82.1±7.2 kJ mol−1. The apparent Arrhenius activation energy for 18:3c,c,t formation was 146.0±13.0 kJ mol−1. The results indicate that small differences in heating temperature can have a profound affect on 18:3c,c,t formation. Selection of appropriate deodorization conditions could limit the amount of 18:3c,c,t produced.  相似文献   

15.
Dietary trans fatty acids (TFA) are of major concern because of their adverse effects on blood lipid levels and coronary heart disease. In Canada, margarines were significant sources of TFA during the 1980s and 1990s. However, this is expected to change with increased public awareness over their adverse health effects and the introduction of new legislature to include TFA content on the Nutritional Facts table of food labels. In this study, the TFA content of the top-selling 29 Canadian margarines, which represented 96.3% of the market share, was determined by capillary gas-liquid chromatography in order to assess the influence of regulatory development during the 3-year transition period between the announcement of new food labelling regulations in Canada that require mandatory declaration of the trans fat content in most pre-packaged foods in January 2003 and its enforcement on 12 December 2005. The 29 margarines included 15 tub margarines made from non-hydrogenated vegetable oils (NHVO-tub margarines), 11 tub margarines made from partially hydrogenated vegetable oils (PHVO-tub margarines) and three print margarines, which were also made from partially hydrogenated vegetable oils (PHVO-print margarines). The 15 NHVO tub-margarines accounted for 71% of the total margarine market share and generally contained less than 2% TFA (mean value 0.9 ± 0.3% of total fatty acids). The mean total TFA contents of PHVO-tub margarines and PHVO-print margarines, were 20.0 ± 4.5% and 39.6 ± 3.5%, and their market shares were 19.3 and 6.0%, respectively. Although during the last 10 years, increasing number of soft tub margarines that contained very little trans fats have been made available in Canada, the PHVO-tub- and -print margarines still contain high levels of trans fats similar to those margarines that were sold in the 1990s. The market share data suggest that the margarines prepared using NHVO and containing almost no TFA were preferred by Canadians over those margarines prepared using PHVO, even before the mandatory declaration of TFA content came into effect on 12 December 2005.  相似文献   

16.
Fifteen samples of commercial edible soybean and rapeseed oils (and mixtures of these) from Belgium, Great Britain and Germany have been analyzed for theirtrans-polyunsaturated fatty acid content. Only one sample out of the 13 refined samples, and the two cold-pressed samples, contained trace amounts oftrans isomers. Others contained between 1 and 3.3% of their total fatty acids as geometrical isomers of linoleic and linolenic acids. The degree of isomerization (DI) of linolenic acid varied between 10.5 and 26.9%. Combining results obtained in this study together with corresponding data for French oils (totalling 21 samples) indicates that the relative percentages of individual linolenic acid geometrical isomers depend on linolenic acid DI. Relationships linking these parameters could be approximated by straight lines, at least for DIs lying between 9 and 30%. Extrapolation to DI=0 suggests that the relative probabilities of isomerization of double bonds in positions 9, 12, and 15 are 41.7, 6.1 and 52.1%, respectively, at the very beginning of the isomerization reaction. At that time, the probability of a simultaneous isomerization of double bonds in positions 9 and 15 is close to zero. Thet,c,t isomer is apparently formedvia thec,c,t and thet,c,c isomers, the former being somewhat more prone to a second geometrical isomerization than the latter. The relative proportion of thec,t,c isomer is practically independent from the DI, at least between 9 and 30%, which would suggest that this isomer is an “end-product” of thecis-trans isomerization reaction.  相似文献   

17.
Thetrans 18:1 acid content and profile for several samples of edible refined beef tallow were determined monthly over a period of one year. For this purpose, gas-liquid chromatography was combined with silver-ion thin-layer chromatography. The mean content oftrans-18:1 isomers was 4.9±0.9% (n=10) of total fatty acids with a minimum of 3.4% and a maximum of 6.2%. The distribution profile of individual isomers was also established. As in other ruminant fats (milk fat, meat fat), the main isomer is vaccenic (trans-11 18:1) acid. Other isomers, with their ethylenic bonds between positions 6 and 16, were found in lesser amounts. However, some slight but definite differences exist between beef tallow and cow milk fat. The relative proportion of vaccenic acid is higher in the former than in the latter. However, the distribution pattern oftrans-18:1 isomers in beef tallow closely resembles that in beef meat fat (lean part).  相似文献   

18.
Kinetics of the formation of trans linoleic acid and trans linolenic acid were compared. Pilot plant-scale tests on canola oils were carried out to validate the laboratory-scale kinetic model of geometrical isomerization of polyunsaturated fatty acids described in our earlier publication. The reliability of the model was confirmed by statistical calculations. Formation of the individual trans linoleic and linolenic acids was studied, as well as the effect of the degree of isomerization on the distribution of the trans fatty acid isomers. Oil samples were deodorized at temperatures from 204 to 230°C from 2 to 86 h. Results showed an increase in the relative percentage of isomerized linolenic and linoleic acid with an increase in either the deodorization time or the temperature. The percentage of trans linoleic acid (compared to the total) after deodorization ranged from <1 to nearly 6%, whereas the percentage of trans linolenic acid ranged from <1 to >65%. Applying this model, the researchers determined the conditions required to produce a specially isomerized oil for a nutritional study. The practical applications of these trials are as follows: (i) the trans fatty acid level of refined oils can be predicted for given deodorization conditions, (ii) the conditions to meet increasingly strict consumer demands concerning the trans isomer content can be calculated, and (iii) the deodorizer design can be characterized by the deviation from the theoretical trans fatty acid content of the deodorized oil.  相似文献   

19.
Maximum specific growth rate (μmax) ofPhaeodactylum tricornutum increased with increasing culture reactor surface-to-volume ratio. Values for μmax of 0.647, 0.377 and 0.339 day−1 were observed for the 75-mL tube, 5.6-L tank and the 16-L tank, respectively. Higher biomass was achieved in the 75-mL batch culture tube under continuous light as compared with light cycle conditions. Palmitic acid, palmitoleic acid and eicosapentaenoic acid (EPA) accounted for over 60% of total fatty acids in the batch tube culture, with EPA content increasing to a maximum after three days. In chemostat cultures, run at dilution rates of 0.15 day−1 (0.45 of μmax) and 0.3 day−1 (0.9 of μmax), cell concentration reached a steady state of 2.18 and 0.7 g/L, respectively, while contents of EPA per liter of culture at steady state were 100.9 and 82.5 mg/L, respectively. At both dilution rates, EPA content of total fatty acids was the same (35.0–35.2%). At a dilution rate of 0.3 day−1, the continuous culture system manifested productivities of 0.51 g/L/d and 25.1 mg/L/d for biomass and EPA, respectively.  相似文献   

20.
Two gas chromatography (GC) procedures were compared for routine analysis of trans fatty acids (TFA) of vegetable margarines, one direct with a 100-m high-polarity column and the other using argentation thin-layer chromatography and GC. There was no difference (P>0.05) in the total trans 18∶1 percentage of margarines with a medium level of TFA (∼18%) made using either of the procedures. Both methods offer good repeatability for determination of total trans 18∶1 percentage. The recoveries of total trans isomers of 18∶1 were not influenced (P>0.1) by the method used. Fatty acid composition of 12 Spanish margarines was determined by the direct GC method. The total contents of trans isomers of oleic, linoleic, and linolenic acids ranged from 0.15 to 20.21, from 0.24 to 0.99, and from 0 to 0.47%, respectively, and the mean values were 8.18, 0.49, and 0.21%. The mean values for the ratios [cis-polyunsaturated/(saturated +TFA)] and [(cis-polyunsaturated + cis-monounsaturated)/(saturated +TFA)] were 1.25±0.39 and 1.92±0.43, respectively. Taking into account the annual per capita consumption of vegetable margarine, the mean fat content of the margarines (63.5%), and the mean total TFA content (8.87%), the daily per capita consumption of TFA from vegetable margarines by Spaniards was estimated at about 0.2 g/person/d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号