首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we present the dielectric and electrical conductivity properties of the partially miscible polymer blend prepared using pyrene functionalized polyaniline (pf‐PANI) and poly(vinylidene fluoride‐co‐hexafluoro propylene) (PVDF‐co‐HFP). The blend mostly retains the fluorescent nature of pf‐PANI as well as can be moldable and possesses good damping property. The dielectric properties have been investigated as a function of temperature at three different frequencies and the plausible origin of polarization responsible for dielectric behavior in this blend has been identified. The experimental results of dielectric measurements are compared with theoretical models and discussed. The surface morphology of the samples has been examined with a scanning electron microscope. The electrical conductivity has also been studied as a function of temperature and explained in terms of hopping of charge carriers/interconnected networks. The combined dielectric and conductivity results together with scanning electron microscope micrographs, reveal that there is hindrance to achieve percolation threshold even after pf‐PANI addition of 57 vol % and subsequent thermal treatment. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44077.  相似文献   

2.
Blends of conductive polymers with classical ones can exhibit good mechanical properties and good electrical conductivity and deserve great attention for application in electronic industrial technology. Conductive polyaniline solutions have been chemically prepared using bis(2-ethyl hexyl)hydrogen phosphate (DiOHP) as the dopant chemical species. The codissolution method leads to conductive polyaniline–polystyrene (PANI–PSt) composites with good mechanical properties. The dependence of electrical conductivity on the volume fraction of PANI in the blend is found to be characteristic of a percolation system. Electrical conductivity and thermoelectric power measurements are interpreted on the basis of hopping mechanisms between polaronic clusters. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1205–1208, 1998  相似文献   

3.
Blend films consisting of polyaniline in emeraldine base form (PANI EB) dispersed in partially cross‐linked carboxymethylchitin (CM‐chitin) were prepared by solution casting, and characterized for their physical, thermal, and electrical properties. Homogeneous and mechanically robust blend films were obtained having PANI EB contents up to 50 wt % in the CM‐chitin matrix. FTIR spectra confirm intimate mixing of the two blend components. The thermal stability of the blend films increased with increase of PANI EB content, suggesting the formation of an intermolecular interaction, such as hydrogen bonding, between PANI EB and CM‐chitin chains. The addition of PANI EB into the pure CM‐chitin film resulted in a decrease in electrical conductivity of the films owing to disruption of ionic conduction of the CM‐chitin structure. After doping the blend films by immersion in HCl solution, the electrical conductivity of the HCl‐doped films increased with increase of the PANI EB content to a maximum value of the order of 10?3 S/cm at 50 wt % PANI EB content. The electrical conductivity of the blend films was also dependent on the HCl concentration as well as on the type of acid dopant. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Polyaniline (PANI) biocomposites were prepared via in situ polymerization of aniline monomer with cellulose triacetate (CTA) and by using ammonium persulfate as an initiator in an aqueous solvent. The composites exhibited high solubility in organic solvents due to the incorporated CTA component, and enabled the fabrication of honeycomb‐patterned thin films by casting the PANI composite solutions under humid conditions. The honeycomb‐patterned PANI–CTA composite films showed a high conductivity corresponding to about 1.5 S/cm, good mechanical stability, and high flexibility. The composites have a potential advantage comparing to pure PANI because of biodegradability and high solubility due to included CTA. These composite films can usefully be applied in the field of bio‐nanotechnology and medicine including micro‐structured electrode surfaces, filters for cell sorting, and bio‐interfaces and so on. POLYM. COMPOS., 37:2649–2656, 2016. © 2015 Society of Plastics Engineers  相似文献   

5.
A composite electrode based on polyaniline (PANI) and hydrous RuO2 is prepared by electrochemical deposition of PANI onto hydrous RuO2 (PANI/RuO2) and its supercapacitive properties are investigated using cyclic voltammetry. The specific capacitances of PANI/RuO2 and hydrous RuO2 electrodes are determined to be 708 and 517 F g−1 at 5 mV s−1, respectively. Simple electrodeposition of PANI on the hydrous RuO2 can achieve comparatively greater capacitance values.  相似文献   

6.
An electrically conducting ‘organic–inorganic’ composite material polyaniline Ce(IV) molybdate was prepared by incorporating electrically conducting polymer, i.e., polyaniline into inorganic precipitate of polyvalent metal acid salts i.e., Ce(IV) molybdate. The temperature dependence of electrical conductivity of this composite system with increasing temperatures was measured on compressed pellets by using a 4-in-line-probe dc electrical conductivity-measuring instrument. The values of conductivity lies in the semiconductor region, i.e., they are of the order of 10−5–10−2 S cm−1 and obey the Arrhenius equation. The thermal stability of this composite material in terms of dc electrical conductivity retention was studied under isothermal and cyclic techniques and electrical conductivity of composite was found to be sufficiently stable under ambient temperature conditions. The dependence of the electrical conductivity prepared with different concentrations of aniline monomers, on the concentration of conducting phases i.e., polyaniline was showed that electrical conductivity increase followed the percolation threshold.  相似文献   

7.
Novel conducting polyaniline (PANI)/cyanoresin (Cyan) blends were prepared by the addition of Cyan/dimethylformamide solutions to aniline monomer/dopant solutions and the in situ chemical oxidative polymerization of aniline with ammonium persulfate as an oxidant in aqueous p‐toluene sulfonic acid solutions. The PANI/Cyan blends were prepared with various compositions (5:95, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, and 70:30), and blend films of PANI/Cyan were obtained with a casting method. The conductivity of the PANI/Cyan blend films was 10?7 to 10?2 S/cm, which was measured by a four‐probe technique. The tensile strength of the blend films was maintained with an increasing amount of PANI (up to 50 wt %), and this was attributed to intermolecular interactions such as hydrogen bonding between PANI and Cyan and a reinforcing effect through blending. This hypothesis was corroborated by Fourier transform infrared spectroscopy. Field emission scanning electron microscopy and thermogravimetric analysis were also used to investigate the morphology and thermal properties of the conducting PANI/Cyan blend films, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1035–1042, 2005  相似文献   

8.
The electrical properties, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, of ITO/polyaniline/Al and ITO/polyaniline/Zn Schottky diodes have been investigated. Polyaniline (PANI) was prepared chemically and doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSNa). The maximum conductivity value for PANI-AMPSNa films was 1.8 × 10−2 S/cm at 0.5 weight ratio of AMPSNa. The values of various junction parameters such as ideality factor, barrier height and charge carrier concentration were calculated based on the thermionic emission theory. Zn electrode showed better rectifying behavior with PANI-AMPSNa film than Al electrode. The obtained C-V characteristics showed that the charge carrier concentration is in the range of 1016/cm3.  相似文献   

9.
A conductive poly(aniline codoped with dodecyl benzene sulfonic acid and hydrochloric acid) [PANI‐D/H, yield: 32.2%, intrinsic viscosity ([η]): 1.39 dL/g, electrical conductivity: 7.3 S/cm] was synthesized by chemical oxidative polymerization from aniline‐dodecylbenzene sulfonic acid salt (A‐DS)/aniline‐hydrochloric acid salt (A‐HS) (6/4M ratio) in an aqueous system. Waterborne polyurethane (WBPU) dispersion obtained from isophorone diisocyanate/poly(tetramethylene oxide)glycol/dimethylol propionic acid/ethylene diamine/triethylene amine/water was used as a matrix polymer. The blend films of WBPU/PANI‐D/H with various weight ratios (99.9/0.1–25/75) were prepared by solution blending/casting. Effect of PANI‐D/H content on the mechanical property, dynamic mechanical property, hardness, electrical conductivity, and antistaticity of WBPU/PANI‐D/H blend films was investigated. The dynamic storage modulus and initial tensile modulus increased with increasing PANI‐D/H content up to 1 wt %, and then it was significantly decreased about the content. With increasing PANI‐D/H content, the glass transition temperature of soft segment (Tgs) and hard segment (Tgh) of WBPU/PANI‐D/H blend films were shifted a bit to lower the temperature. The tensile strength and hardness of WBPU/PANI‐D/H blend films increased a little with increasing PANI‐D/H content up to 0.5 wt %, and then it was dramatically decreased over the content. The elongation at break of WBPU/PANI‐D/H decreased with an increase in PANI‐D/H content. From these results, it was concluded that 0.5–1 wt % of PANI‐D/H was the critical concentration to reinforce those various properties of WBPU/PANI‐D/H blend films prepared in this study. The electrical conductivity of WBPU/ultrasonic treated PANI‐D/H (particle size: 0.7 μm) blend films prepared here increased from 4.0 × 10?7 to 0.33 S/cm with increasing PANI‐D/H content from 0.1 to 75 wt %. The antistatic half‐life time (τ1/2) of pure WBPU film was about 110 s. However, those of WBPU/ultrasonic treated PANI‐D/H blend films (τ1/2: 8.2–0.1 s, and almost 0 s) were found to decrease exponentially with increasing PANI‐D/H content (0.1–9 wt %, and above 9 wt %). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 700–710, 2004  相似文献   

10.
Electrically conductive nanocomposites of HCl‐doped polyaniline (PANI–HCl) nanocolloid particles with water‐soluble and film‐forming polymers such as poly(vinyl alcohol) (PVA) and methylcellulose (MC) were prepared by the redispersion of preformed MC‐coated submicrometric PANI–HCl particles in PVA and MC solutions under sonication for 1 h and the casting of the films from the dispersions followed by drying. The submicrometric polyaniline (PANI) particles were prepared by the oxidative dispersion polymerization of aniline in an acidic (1.25M HCl) aqueous ethanol (30 : 70) medium with MC as a steric stabilizer. The particles contained 4.7 wt % MC and had a conductivity of 7.4 S/cm. They had an oblong shape of 203 nm (length) and 137 nm (breadth). Sonication broke the oblong‐shaped particles to sizes of ~10 nm in the PVA matrix and ~60 nm in the MC matrix. The electrical conductivity of these films was measured, and the percolation threshold was determined. The composites had the characteristics of a low percolation threshold at a volume fraction of PANI of 2.5 × 10?2 in the PVA matrix and at a volume fraction of 3.7 × 10?2 in the MC matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The effect of conductive polymer matrix including polyaniline (PANI) and polypyrrole (PPy) on the magnetoresistance (MR) behaviors in the variable range hopping (VRH) regime has been investigated in the disordered polymer nanocomposites containing tungsten trioxide (WO3) nanoparticles. These nanocomposites have demonstrated ultrahigh MR sensitivity at low magnetic field regime. The observed positive MR has been well explained by the wave-function shrinkage model. The conductive polymer matrix has shown different effects on the MR behaviors of the nanocomposites. The WO3/PANI nanocomposites have a lower localization length (a0) and density of states at the Fermi level (N(EF)), and higher average hopping distance (Rhop) and average hopping energy (W) compared with those of the WO3/PPy nanocomposites.  相似文献   

12.
Frequency dependent (ac) and independent (dc) conductivity measurements have been carried out on polyaniline (PANI) films deposited by solution casting technique. Under low electric field (1 × 103 V/cm) condition, the dc conductivity measured in the temperature range of 173–303 K obeys the three-dimensional variable range hopping (3D VRH) formalism. The Mott parameters such as localization length (α?1 ≈ 7 Å), density of states [N(E F ) = 1.04 × 1019 states/eV cm3], hopping range (R hop = 60 Å) and hopping energy (W hop = 0.38 eV) are computed. The ac conductivity measured in the frequency range 10 kHz–5 MHz and in the temperature range 150–380 K follow a power-law dependence σ acω s, typical for charge transport by hopping or tunnelling processes. Therefore, the experimental results are analyzed with reference to various theoretical models based on quantum-mechanical tunnelling and classical hopping over barriers. The observed minimum in the temperature dependence of the frequency exponent s strongly suggests that tunnelling of large polarons is the dominant transport process. The polaron radius (r p ≈ 25 Å) and barrier height for infinite site separation (W HO ≈ 0.22 eV) are evaluated. The density of states [N(E F)] and tunnelling distances (R ω ) are estimated and discussed in terms of frequency and temperature.  相似文献   

13.
Preparation and processing of conductive blends based on doped polyaniline (c‐PANI) or tetra‐aniline (c‐TANI) with epoxy resins is described. The dedoping of c‐PANI by the epoxy hardener, in the process of the blend curing, has been investigated by UV–vis–NIR spectroscopy. Classical amine hardeners lead to a quick increase of the blend resistivity during its processing, which can be correlated with the observed spectral features, characteristic of the deprotonation of c‐PANI. For these reasons, for further investigations, BF3‐amine complexes have been selected as curing agents. Using these hardeners and tuning the curing conditions (temperature and time), it is possible to obtain blends with resistivities down to 102 Ω·cm, depending on the type of the epoxy resin used. In general, resins with higher epoxy network densities give c‐PANI‐based blends of lower percolation thresholds. The effect of the c‐PANI processing solvent on the resistivity of the resulting blend is even more pronounced than the epoxy network density. In particular, blends processed from toluene show much higher resistivities than those processed from tetrahydrofuran (THF) of ethylacetate (EA). Above the percolation threshold, c‐TANI‐based epoxy blends show at least three orders of magnitude higher resistivities than their c‐PANI analogues. They are however technologically interesting, because they are not very sensitive to the processing/curing conditions and show lower percolation thresholds. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Polyaniline (PANI) protonated with camphorsulfonic acid (CSA) and three different poly(alkylene phosphates) (PAPs) (where alkylene = pentylene, hexylene, or nonylene) was used in the fabrication of conductive polyaniline–poly(methyl methacrylate) (PMMA) blends. The lowest percolation threshold (fp = 0.041 wt %) was obtained for the PANI(CSA)0.5–PMMA blend plasticized with 35 wt % of dibutyl phtalate (DBPh). This blend is also very resistant against the deprotonation of its conductive phase in basic solutions of pH = 9. In the case of blends prepared with the use of PAPs as PANI dopants, the percolation threshold strongly depends on the length of the hydrophobic spacer (alkylene group) in the dopant. The percolation threshold decreases in the order PPP > PHP > PNP, whereas the resistance against deprotonation in basic solutions decreases in the following inverse order: PNP > PHP > PPP. This last observation can be rationalized by increasing contribution of hydrophobic segments in the polymeric dopant, when going from PPP to PNP, which renders polyaniline more resistance toward the penetration by aqueous basic solutions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 471–479, 1999  相似文献   

15.
Three types of composite supercapacitor electrodes were prepared; electroactive polyaniline (PANI), PANI/multi-walled carbon nanotube (CNT), and PANI/CNT/RuO2. Specifically, the PANI and PANI/CNT were prepared by polymerization, and PANI/CNT/RuO2 was prepared by electrochemical deposition of RuO2 on the PANI/CNT matrix. Cyclic voltammetry between −0.2 and 0.8 V (vs. Ag/AgCl) at various scan rates was performed to investigate the supercapacitive properties in an electrolyte solution of 1.0 M H2SO4. The PANI/CNT/RuO2 electrode showed the highest specific capacitance at all scan rates (e.g., 441 and 392 F g−1 at 100 and 1,000 mV s−1, respectively). In contrast, the PANI/CNT electrode demonstrated the best capacitance retention (66%) after 104 cycles. Additional analysis including morphology and complex impedance spectroscopy suggested that with small loading of RuO2, an increase in capacitance was observed, but dissolution and/or detachment of RuO2 species from the electrode might occur during cycling to reduce the cycle performance.  相似文献   

16.
A series of cellulose triacetate/Ludox-silica nancomposite pervaporation membranes was successfully prepared via solution casting, aiming to improve the performance of cellulose triacetate membranes for desalination. The fabricated nanocomposite membranes were characterized to study the membrane morphology, chemical composition, mechanical properties, and surface hydrophilicity. Furthermore, the desalination performance was investigated as a function of silica (SiO2) loading (ranging from 1 to 4 wt%) and feed concentration at 30 and 60 g/L of sodium chloride (NaCl). Pervaporation experiments showed that incorporating 4 wt% SiO2 into a cellulose triacetate (CTA) membrane increased the water flux by a factor 2.5 compared with pristine CTA (from 2.2 to 6.1 kg m−2 h−1) for a 30 g/L NaCl feed solution at 70°C, while the salt rejection remained above 99%. The CTA/4 wt% SiO2 membrane was found to have only 21% flux reduction when tested with a 60 g/L NaCl feed solution, without changes in membrane selectivity. This suggests that the developed CTA/Ludox-SiO2 nanocomposite pervaporation membrane is suitable for desalination.  相似文献   

17.
Galvanostatic electrodeposited thin films of polyaniline (PANI)/polypyrrole (PPY) blend were tested as chemical sensors and evaluated according to the relative monomer concentration in polymerization solution aiming to obtain a reliable reference field‐effect transistor able to be used as contrast sensing film. The blend material presented properties that can be controlled by the polymerization process. The films were produced using aniline (0.25 M) and pyrrole (0.25 M) mixed in five different proportions (90/10, 70/30, 50/50, 30/70, 10/90) with HCl (1.0 M) in an aqueous solution. The current density was 1 mA/cm2 for 300 s. The films were analyzed by their chronopotentiometric curves, thickness, reflectance spectroscopy, optical color parameters, and surface morphology. The characteristics and properties analyzed were correlated to the relative monomer concentration in the polymerization solution. The polymerization of PANI is favorable in aqueous acid solution compared to PPY, which resulted in thin films with properties varying from PANI down to PPY. The blend films presented controllable sensitivity when applied as sensing stage in field‐effect transistor devices as function of the relative monomer concentration. The sensitivity varied from 57 ± 1 mV/pH for the PANI sample, down to 25 ± 1 mV/pH for the PPY sample, presenting an exponential behavior. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46625.  相似文献   

18.
Blend films (free‐standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI‐EB (emeraldine base) dissolved in N‐methyl‐2‐pyrrolidone (NMP) to the latex (NRL), (2) adding PANI‐EB dissolved in m‐cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress–strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1498–1503, 2005  相似文献   

19.
Films of blended poly(acrylonitrile‐butadiene‐styrene) (ABS) and polyaniline (PANI) were produced by codissolving both components in a common organic solvent, which was then evaporated. The influence of the preparation conditions on the properties of the blends was analyzed by factorial design. The factors evaluated were the PANI content in the blend, the m‐cresol to chloroform solvent ratio, the dopant used (dodecylbenzenesulfonic acid (DBSA) or camphor sulfonic acid) and its concentration, and the acrylonitrile content in the ABS. The responses analyzed were the flexibility and electrical conductivity of the blends. The results showed that the PANI content in the blend and the acrylonitrile content in the ABS were the major factors influencing both of the assessed responses. The dopant affected only the conductivity, DBSA being preferred for the development of more conductive PANI/ABS blends. The solvent ratio did not have any influence, owing to the uniform expanded coil conformation expected for PANI molecules at the studios ratios. After the best conditions had been established, a percolation threshold study was performed that pointed to a low threshold of 3 wt % PANI necessary in the blend, giving a flexible blend with a conductivity of 3 S/cm. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(n‐butyl methacrylate) (PBMA)–polyaniline (PANI) composite films were obtained by extrusion by use of two methods: the first method consisted of polymerizing a thin layer of PANI, with Cl? as dopant, on the extruded film of PBMA; the second method was based on blends of PBMA and PANI produced by the extrusion of the two polymers by using dodecylbenzene sulfonic acid (DBSA) as dopant. The thermal properties, electrical conductivity, and morphology of the composite films obtained were measured. The sensitivity of the composites films as detectors of hydrogen peroxide and ammonia was evaluated. The change in the electrical resistance on exposure to different aqueous solutions of these components shows a linear behavior. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 179–183, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号