首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linking studies on the Escherichia coli F0F1-ATP synthase indicated a site of interaction involving gamma and epsilon subunits in F1 and subunit c in F0 (Watts, S. D., Tang, C., and Capaldi, R. A. (1996) J. Biol. Chem. 271, 28341-28347). To assess the function of these interactions, we introduced random mutations in this region of the gamma subunit (gamma194-213). One mutation, gammaGlu-208 to Lys (gammaE208K), caused a temperature-sensitive defect in oxidative phosphorylation-dependent growth. ATP hydrolytic rates of the gammaE208K F0F1 enzyme became increasingly uncoupled from H+ pumping above 28 degreesC. In contrast, Arrhenius plot of steady-state ATP hydrolysis of the mutant enzyme was linear from 20 to 50 degreesC. Analysis of this plot revealed a significant increase in the activation energy of the catalytic transition state to a value very similar to soluble, epsilon subunit-inhibited F1 and suggested that the mutation blocked normal release of epsilon inhibition of ATP hydrolytic activity upon binding of F1 to F0. The difference in temperature dependence suggested that the gammaE208K mutation perturbed release of inhibition via a different mechanism than it did energy coupling. Suppressor mutations in the polar loop of subunit c restored ATP-dependent H+ pumping and transition state thermodynamic parameters close to wild-type values indicating that interactions between gamma and c subunits mediate release of epsilon inhibition and communication of coupling information.  相似文献   

2.
Genomic sequences encoding murine Lfm1, whose predicted protein sequence is 96% and 98% similar to bovine and rat F1F0-ATP synthase e subunits (respectively), have been amplified from BALB/cByJ DNA, cloned, and sequenced. The 1.1-kilobase gene has 3 introns and 4 exons, and its coding sequence differs by two nucleotides compared to the previously published BALB/cHnn Lfm1 cDNA sequence. A PstI restriction site polymorphism in intron 2 between C57BL/6J and Mus spretus was used to map this gene to Chromosome 5 near D5Mit9. Related sequences were mapped on Chromosomes 8, 11, and 2 unlinked loci on Chromosome 2 using Southern blot analyses with the 1. 1-kilobase gene as probe. Previous studies from this laboratory indicated that the Lfm1/e subunit was regulated by the level of dietary fat and carbohydrate. Northern hybridization analyses demonstrated that e subunit mRNA abundance showed statistically significant differences (p < 0.025) between hearts of BALB/c mice fed 3% and those fed 20% corn oil for 2 weeks and in liver (p < 0. 05) from the same animals. Significant differences were also observed in hepatic and heart mRNA expression at different times after eating in animals subjected to a fast/refeed regimen. The implications of the high degree of sequence similarity to the e subunit for rat and bovine F1F0-ATP synthase and its regulation by diet are discussed.  相似文献   

3.
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green alga Chlamydomonas reinhardtii. A pure and active ATP synthase was obtained by means of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and PMSF [corrected]. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase alpha subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58-70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase beta subunit from C. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771-780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15-18 residues longer than in ATP synthase alpha subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.  相似文献   

4.
We report here the identification of the novel subunit of the mitochondrial F1F0-ATPase from Saccharomyces cerevisiae, ATPase subunit e. Yeast ATPase subunit e displays significant similarities in both amino acid sequence, properties (hydropathy and predicted coiled-coil structure) and orientation in the inner membrane, with previously identified mammalian ATPase subunit e proteins. Estimation of its native molecular mass and ability to be co-immunoprecipitated with a subunit of the F1-ATPase, demonstrate that subunit e is a subunit of the F1F0-ATPase. Stable expression of subunit e requires the presence of the mitochondrially encoded subunits of the F0-ATPase. Subunit e had been previously identified as Tim11 and was proposed to be involved in the process of sorting of proteins to the mitochondrial inner membrane.  相似文献   

5.
Diamide treatment of the F0F1-ATP synthase in "inside out" submitochondrial particles (ESMP) in the absence of a respiratory Delta mu H+ as well as of isolated Fo reconstituted with F1 or F1-gamma subunit results in direct disulfide cross-linking between cysteine 197 in the carboxy-terminal region of the F0I-PVP(b) subunit and cysteine 91 at the carboxyl end of a small alpha-helix of subunit F1-gamma, both located in the stalk. The F0I-PVP(b) and F1-gamma cross-linking cause dramatic enhancement of oligomycin-sensitive decay of Delta mu H+. In ESMP and MgATP particles the cross-linking is accompanied by decoupling of respiratory ATP synthesis. These effects are consistent with the view that F0I-PVP(b) and F1-gamma are components of the stator and rotor of the proposed rotary motor, respectively. The fact that the carboxy-terminal region of F0I-PVP(b) and the short alpha-helix of F1-gamma can form a direct disulfide bridge shows that these two protein domains are, at least in the resting state of the enzyme, in direct contact. In isolated F0, diamide also induces cross-linking of OSCP with another subunit of F0, but this has no significant effect on proton conduction. When ESMP are treated with diamide in the presence of Delta mu H+ generated by respiration, neither cross-linking between F0I-PVP(b) and F1-gamma subunits nor the associated effects on proton conduction and ATP synthesis is observed. Cross-linking is restored in respiring ESMP by Delta mu H+ collapsing agents as well as by DCCD or oligomycin. These observations indicate that the torque generated by Delta mu H+ decay through Fo induces a relative motion and/or a separation of the F0I-PVP(b) subunit and F1-gamma which places the single cysteine residues, present in each of the two subunits, at a distance at which they cannot be engaged in disulfide bridging.  相似文献   

6.
A strain of Escherichia coli was constructed which had a complete deletion of the chromosomal uncB gene encoding subunit a of the F0F1-ATP synthase. Gene replacement was facilitated by a selection protocol that utilized the sacB gene of Bacillus subtilis cloned in a kanamycin resistance cartridge (Ried, J. L., and Collmer, A. (1987) Gene (Amst.) 57, 239-246). F0 subunits b and c inserted normally into the membrane in the DeltauncB strain. This observation confirms a previous report (Hermolin, J., and Fillingame, R. H. (1995) J. Biol. Chem. 270, 2815-2817) that subunit a is not required for the insertion of subunits b and c. The DeltauncB strain has been used to characterize mutations in Arg-210 and Glu-219 of subunit a, residues previously postulated to be essential in proton translocation. The aE219G and aE219K mutants grew on a succinate carbon source via oxidative phosphorylation and membranes from these mutants exhibited ATPase-coupled proton translocation (i.e. ATP driven 9-amino-6-chloromethoxyacridine quenching responses that were 60-80% of wild type membranes). We conclude that the aGlu-219 residue cannot play a critical role in proton translocation. The aR210A mutant did not grow on succinate and membranes exhibited no ATPase-coupled proton translocation. However, on removal of F1 from membrane, the aR210A mutant F0 was active in passive proton translocation, i.e. in dissipating the DeltapH normally established by NADH oxidation with these membrane vesicles. aR210A membranes with F1 bound were also proton permeable. Arg-210 of subunit a may play a critical role in active H+ transport that is coupled to ATP synthesis or hydrolysis, but is not essential for the translocation of protons across the membranes.  相似文献   

7.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

8.
In Escherichia coli F1F0-ATP synthase, the two b subunits form the second stalk spanning the distance between the membrane F0 sector and the bulk of F1. Current models predict that the stator should be relatively rigid and engaged in contact with F1 at fixed points. To test this hypothesis, we constructed a series of deletion mutations in the uncF(b) gene to remove segments from the middle of the second stalk of the subunit. Mutants with deletions of 7 amino acids were essentially normal, and those with deletions of up to 11 amino acids retained considerable activity. Membranes prepared from these strains had readily detectable levels of F1-ATPase activity and proton pumping activity. Removal of 12 or more amino acids resulted in loss of oxidative phosphorylation. Levels of membrane-associated F1-ATPase dropped precipitously for the longer deletions, and immunoblot analysis indicated that reductions in activity correlated with reduced levels of b subunit in the membranes. Assuming the likely alpha-helical conformation for this area of the b subunit, the 11-amino acid deletion would result in shortening the subunit by approximately 16 A. Since these deletions did not prevent the b subunit from participating in productive interactions with F1, we suggest that the b subunit is not a rigid rodlike structure, but has an inherent flexibility compatible with a dynamic role in coupling.  相似文献   

9.
F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.  相似文献   

10.
The multicopy c subunit of the H+-transporting ATP synthase of Escherichia coli folds through the transmembrane F0 sector as a hairpin of two hydrophobic alpha-helices with the proton-translocating aspartyl-61 side chain centered in the second transmembrane helix. The number of subunits c in the F0 complex, which is thought to determine the H+-pumping/ATP stoichiometry, was previously not determined with exactness but thought to range from 9-12. The studies described here indicate that the exact number is 12. Based upon the precedent of the subunit c in vacuolar-type ATPases, which are composed of four transmembrane helices and seem to have evolved by gene duplication of an F0-type progenitor gene, we constructed genetically fused dimers and trimers of E. coli subunit c. Both the dimeric and trimeric forms proved to be functional. These results indicate that the total number of subunit c in F0 should be a multiple of 2 and 3. Based upon a previous study in which the oligomeric organization of c subunits in F0 was determined by cross-linking of Cys-substituted subunits (Jones, P. C. , Jiang, W., and Fillingame, R. H. (1998) J. Biol. Chem. 273, 17178-17185), we introduced Cys into the first and last transmembrane helices of subunit c monomers, dimers, and trimers and attempted to generate cross-linked products by oxidation with Cu(II)-(1,10-phenanthroline)2. Double Cys substitutions at two sets of positions gave rise to extensive cross-linked multimers. Multimers of the monomer that extended up to the position of c12 were correlated and calibrated with distinct cross-linked species of the appropriate doubly Cys-substituted dimers (i.e. c2, c4, . c12) and doubly Cys-substituted trimers (i.e. c3, c6, c9, c12). The results show that there are 12 copies of subunit c per F0 in E. coli, the exact number having both mechanistic and structural significance.  相似文献   

11.
The interaction between the hydrophilic C-terminal part of subunit 4 (subunit b) and OSCP, which are two components of the connecting stalk of the yeast ATP synthase, was shown after reconstitution of the two over-expressed proteins and by the two-hybrid method. The organization of a part of the F0 sector was studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunits 4 by a maleimide fluorescent probe revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, non-permeant maleimide reagents labeled subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition, a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.  相似文献   

12.
The alpha subunit of the mitochondrial ATP synthase is part of the F1 enzymatic complex known to bind ADP, phosphate and ATP and is at the heart of the mitochondrial energy-producing mechanism. The mouse embryonal carcinoma variant of the alpha subunit cDNA was cloned and the complete nucleotide sequences of two different lengths of clones were determined. Two distinct polyadenylation sites in the cDNA sequence were detected and two sizes of mRNAs were confirmed by Northern blot hybridization. Two putative ATP-binding motifs - A and B, have been hypothesized for this enzyme based on previous NMR work on another ATP-binding enzyme, adenylate kinase. We have constructed four deletion mutants of the alpha subunit of the mouse F1-ATP synthase to examine the putative role of these domains. The resulting recombinant proteins were expressed and purified. Functional studies with the immobilized mutants proved the significance of both sites for ATP binding.  相似文献   

13.
Mitochondria, isolated from rat livers during the early phase of liver regeneration (7-24 h after partial hepatectomy), show: (i) decrease in the rate of ATP synthesis; (ii) increase of malondialdehyde and of oxidized protein production; (iii) decrease of the content of intramitochondrial glutathione and of protein thiols on mitochondrial proteins; (iv) increase of the glutathione bound to mitochondrial proteins by disulfide bonds. These observations suggest an increase of production of oxygen radicals in liver mitochondria, following partial hepatectomy, which can alter the function of the enzymes involved in the oxidative phosphorylation. Blue-native gel electrophoresis of rat liver mitochondria, isolated after partial hepatectomy, shows, during the early phase of liver regeneration (0-24 h after partial hepatectomy), a progressive decrease of the content of F0F1-ATP synthase complex. The amount of glutathione bound to the F0F1-ATP synthase, electroeluted from the blue-native gels, progressively increased during the early phase of liver regeneration. It is concluded that partial hepatectomy causes mitochondrial oxidative stress that, in turn, modifies proteins (such as F0F1-ATP synthase) involved in the mitochondrial oxidative phosphorylation.  相似文献   

14.
We report evidence for proton-driven subunit rotation in membrane-bound FoF1-ATP synthase during oxidative phosphorylation. A betaD380C/gammaC87 crosslinked hybrid F1 having epitope-tagged betaD380C subunits (betaflag) exclusively in the two noncrosslinked positions was bound to Fo in F1-depleted membranes. After reduction of the beta-gamma crosslink, a brief exposure to conditions for ATP synthesis followed by reoxidation resulted in a significant amount of betaflag appearing in the beta-gamma crosslinked product. Such a reorientation of gammaC87 relative to the three beta subunits can only occur through subunit rotation. Rotation was inhibited when proton transport through Fo was blocked or when ADP and Pi were omitted. These results establish FoF1 as the second example in nature where proton transport is coupled to subunit rotation.  相似文献   

15.
The rate of ATP synthesized by the ATP synthase (F0F1-ATPase) is limited by the rate of energy production via the respiratory chain, when measured in everted membrane vesicles of an Escherichia coli atp wild-type strain. After energization of the membranes with NADH, fractional inactivation of F0F1 by the covalent inhibitor N,N'-dicyclohexylcarbodiimide allowed the rate of ATP synthesis/mol remaining active ATP synthase complexes to increase; the active ATP synthase complexes were calculated using ATP hydrolysis rates as the defining parameter. In addition, variation of the assay temperature revealed an increase of the ATP synthesis rate up to a temperature of 37 degrees C, the optimal growth temperature of E. coli. In parallel, the amount of F0F1 complexes present in membrane vesicles was determined by immunoquantitation to be 3.3 +/- 0.3% of the membrane protein for cells grown in rich medium and 6.6 +/- 0.3% for cells grown in minimal medium with glycerol as sole carbon and energy source. Based on these data, a turnover number for ATP synthesis of 270 +/- 40 s(-1) could be determined in the presence of 5% active F0F1 complexes. Therefore, these studies demonstrate that the ATP synthase complex of E. coli has, with respect to maximum rates, the same capacity as the corresponding enzymes of eukaryotic organells.  相似文献   

16.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0.  相似文献   

17.
Two subunits of the yeast ATP synthase have been isolated. Subunit e was found loosely associated to the complex. Triton X-100 at a 1% concentration removed this subunit from the ATP synthase. The N-terminal sequencing of subunit i has been performed. The data are in agreement with the sequence of the predicted product of a DNA fragment of Saccharomyces cerevisiae chromosome XIII. The ATP18 gene encodes subunit i, which is 59 amino acids long and corresponds to a calculated mass of 6687 Da. Its pI is 9.73. It is an amphiphilic protein having a hydrophobic N-terminal part and a hydrophilic C-terminal part. It is not apparently related to any subunit described in other ATP synthases. The null mutant showed low growth on nonfermentable medium. Mutant mitochondria display a low ADP/O ratio and a decrease with time in proton pumping after ATP addition. Subunit i is associated with the complex; it is not a structural component of the enzyme but rather is involved in the oxidative phosphorylations. Similar amounts of ATP synthase were measured for wild-type and null mutant mitochondria. Because 2-fold less specific ATPase activity was measured for the null mutant than for the wild-type mitochondria, we make the hypothesis that the observed decrease in the turnover of the mutant enzyme could be linked to a proton translocation defect through F0.  相似文献   

18.
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.  相似文献   

19.
A method for reconstitution of membrane proteins into unilamellar liposomes is described. The model enzyme was the F0F1 ATP synthase from mitochondria when in complex or free from its inhibitor protein. The enzymes were first solubilized with either of two detergents, i.e., n-dodecyl-beta-D maltoside or lauryldimethylamine oxide. After solubilization, the enzymes were passed through a column of Sepharose-AH using an ADP/sodium cholate selective elution buffer. The enzymes recovered from the column were subsequently passed through a centrifuge column of Sephadex G-50 fine. The eluate contained liposomes in which the F0F1 complex (with and without inhibitor protein) had been reconstituted. The reconstituted enzymes were capable of hydrolyzing ATP with formation of electrochemical H+ gradients. They also catalyzed the ATP-Pi exchange reactions. Thus the F0F1 complex which is formed by 18 subunits can be rapidly reconstituted into liposomes in a fully functional state. Moreover the data show that the interactions between the enzyme and its inhibitor protein are not perturbed in the reconstitution procedure.  相似文献   

20.
The delta and b subunits are both involved in binding the F1 to the F0 part in the Escherichia coli ATP synthase (ECF1F0). The interaction of the purified delta subunit and the isolated hydrophilic domain of the b subunit (bsol) has been studied here. Purified delta binds to bsol weakly in solution, as indicated by NMR studies and protease protection experiments. On F1, i.e. in the presence of ECF1-delta, delta, and bsol interact strongly, and a complex of ECF1.bsol can be isolated by native gel electrophoresis. Both delta subunit and bsol are protected from trypsin cleavage in this complex. In contrast, the delta subunit is rapidly degraded by the protease when bound to ECF1 when bsol is absent. The interaction of bsol with ECF1 involves the C-terminal domain of delta as delta(1-134) cannot replace intact delta in the binding experiments. As purified, bsol is a stable dimer with 80% alpha helix. A monomeric form of bsol can be obtained by introducing the mutation A128D (Howitt, S. M., Rodgers, A. J.,W., Jeffrey, P. D., and Cox, G. B. (1996) J. Biol. Chem. 271, 7038-7042). Monomeric bsol has less alpha helix, i.e. only 58%, is much more sensitive to trypsin cleavage than dimer, and unfolds at much lower temperatures than the dimer in circular dichroism melting studies, indicating a less stable structure. The bsol dimer, but not monomer, binds to delta in ECF1. To examine whether subunit b is a monomor or dimer in intact ECF1F0, CuCl2 was used to induce cross-link formation in the mutants bS60C, bQ104C, bA128C, bG131C, and bS146C. With the exception of bS60C, CuCl2 treatment resulted in formation of b subunit dimers in all mutants. Cross-linking yield was independent of nucleotide conditions and did not affect ATPase activity. These results show the b subunit to be dimeric for a large portion of the C terminus, with residues 124-131 likely forming a pair of parallel alpha helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号