首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin   总被引:1,自引:0,他引:1  
G protein-coupled receptor kinases (GRKs) are implicated in the homologous desensitization of G protein-coupled receptors. Six GRK subtypes have so far been identified, named GRK1 to GRK6. The functional state of the GRKs can be actively regulated in different ways. In particular, it was found that retinal rhodopsin kinase (GRK1), but not the ubiquitous betaARK1 (GRK2), can be inhibited by the photoreceptor-specific Ca2+-binding protein recoverin through direct binding. The present study was aimed to investigate regulation of other GRKs by alternative Ca2+-binding proteins such as calmodulin (CaM). We found that Gbetagamma-activated GRK2 and GRK3 were inhibited by CaM to similar extents (IC50 approximately 2 microM), while a 50-fold more potent inhibitory effect was observed on GRK5 (IC50 = 40 nM). Inhibition by CaM was strictly dependent on Ca2+ and was prevented by the CaM inhibitor CaMBd. Since Gbetagamma, which is a binding target of Ca2+/CaM, is critical for the activation of GRK2 and GRK3, it provides a possible site of interaction between these proteins. However, since GRK5 is Gbetagamma-independent, an alternative mechanism is conceivable. A direct interaction between GRK5 and Ca2+/CaM was revealed using CaM-conjugated Sepharose 4B. This binding does not influence the catalytic activity as demonstrated using the soluble GRK substrate casein. Instead, Ca2+/CaM significantly reduced GRK5 binding to the membrane. The mechanism of GRK5 inhibition appeared to be through direct binding to Ca2+/CaM, resulting in inhibition of membrane association and hence receptor phosphorylation. The present study provides the first evidence for a regulatory effect of Ca2+/CaM on some GRK subtypes, thus expanding the range of different mechanisms regulating the functional states of these kinases.  相似文献   

3.
To understand the leptin's action on hypothalamic arcuate nucleus (ARC), Ca2+/calmodulin (CaM)-dependent response in leptin-treated rat ARC was investigated. The in vitro phosphorylation of ARC extracts from leptin-treated rats did not respond to CaM. Although CaM-dependent protein kinase II activity was not affected by leptin, the gene expression of calcineurin, CaM-dependent phosphatase, increased in leptin-treated rats.  相似文献   

4.
Glucocorticoids appear to participate in apoptosis of unselected CD4(+)CD8(+) thymocytes. Activation of Ca2+-independent novel protein kinase C (nPKC) precedes glucocorticoid-induced thymocyte apoptosis, while proper levels of Ca2+-dependent protein kinase C (cPKC) and calcineurin activities contribute to rescue thymocytes. To clarify the role of nPKC in thymocyte apoptosis, murine thymocytes were stimulated with the diterpene diester, ingenol 3, 20-dibenzoate (IDB). IDB induced selective translocation of nPKC-delta, -epsilon, and -theta and PKC-mu from the cytosolic fraction to the particulate fraction and induced morphologically typical apoptosis through de novo synthesis of macromolecules. The apoptosis was also induced by thymeleatoxin, a diterpene ester, at relatively high concentrations that induced translocation of cPKC, nPKC-theta, and PKC-mu. The IDB- or thymeleatoxin-induced death was inhibited by non-isoform-selective PKC inhibitors, but not by their structural analogs with weak PKC-inhibitory activity or the selective inhibitor of cPKC and PKC-mu, G? 6976. The death was also inhibited by calcium ionophore ionomycin at concentrations within a narrow range. The range corresponded to the concentration range that contributes to the inhibition of glucocorticoid-induced apoptosis. The antiapoptotic effect was canceled by the immunosuppressant FK506 but not by rapamycin. These results indicate that activation of nPKC, especially nPKC-theta, induces apoptosis in thymocytes and that calcineurin activation regulates the apoptosis.  相似文献   

5.
The phosphorylation site(s) involved in the activation of CaM-kinase IV by CaM-kinase kinase alpha was studied using a mutant CaM-kinase IV (K71R) in which Lys71 (ATP-binding site) was replaced with Arg, because the autophosphorylation of CaM-kinase IV occurring at multiple sites made it difficult to study phosphorylation of the enzyme by CaM-kinase kinase. Sequence analysis of the phosphopeptide from the trypsin digest of CaM-kinase IV (K71R) phosphorylated by CaM-kinase kinase alpha suggested that the phosphorylation of CaM-kinase IV by CaM-kinase kinase only occurred at Thr196. The recombinant mutant CaM-kinase IV in which Thr196 or Thr200 was replaced with nonphosphorylatable alanine showed little activity in the presence and absence of the kinase kinase. The mutant enzyme in which Thr196 was replaced with negatively charged aspartic acid showed almost 25 times as high activity as the wild-type enzyme in the absence of the kinase kinase, and no more activation was observed in its presence. In contrast, the enzyme in which Thr200 was replaced with aspartic acid showed little enzyme activity. Thus, it may be concluded that the phosphorylation of Thr196 in CaM-kinase IV by CaM-kinase kinase is necessary for the subsequent autophosphorylation and activation of CaM-kinase IV.  相似文献   

6.
Calmodulin regulates diverse Ca2+-dependent cellular processes, including cell cycle progression and cytoskeletal rearrangement. A recently identified calmodulin-binding protein, IQGAP1, interacts with both actin and Cdc42. In this study, evidence is presented that, in the absence of Ca2+, IQGAP1 bound to Cdc42, which maintained Cdc42 in the active GTP-bound state. Addition of Ca2+ both directly abrogated the effect of IQGAP1 on the intrinsic GTPase activity of Cdc42 and, in the presence of calmodulin, dissociated Cdc42 from IQGAP1. In addition, in vitro binding assays revealed that calmodulin associated with both the calponin homology domain and the IQ motifs of IQGAP1. Moreover, F-actin competed with Ca2+/calmodulin for binding to the calponin homology domain, but not the IQ motifs, of IQGAP1. Analysis of cell lysates revealed that calmodulin bound to IQGAP1 in a ternary complex with Cdc42. Increasing the Ca2+ concentration enhanced the interaction between calmodulin and IQGAP1, with a concomitant decrease in the association of IQGAP1 with Cdc42. Our data suggest that IQGAP1 functions as a scaffolding protein, providing a molecular link between Ca2+/calmodulin and Cdc42 signaling.  相似文献   

7.
We reported that polyclonal antibody against Ca2+/calmodulin-dependent protein kinase V (CaM kinase V) reacted to two proteins of rat cerebrum with a molecular mass of 40 and 41 kDa. This antibody revealed the immunoreactivity with CaM kinase I expressed in E. coli (recombinant CaM kinase I), of which molecular mass was 40 kDa, whereas 41 kDa mainly with purified CaM kinase V. The immunoreactive bands of recombinant CaM kinase I and CaM kinase V did not shift by phosphorylation or dephosphorylation. These results suggest that CaM kinase V and CaM kinase I may form a family of isoforms.  相似文献   

8.
Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.  相似文献   

9.
This observational study explored the effects of demographics, sickness, and polypharmacy on the non-steady state population pharmacokinetics of intravenous phenytoin. One hundred fifteen patients were studied. Models were developed using the NONMEM program with hybrid first-order conditional estimation. A Michaelis-Menten model with delayed induction was preferred over a Michaelis-Menten model without induction, a Michaelis-Menten model with immediate induction, or a linear model with delayed induction. When the data were fit to a Michaelis-Menten model with delayed induction, the volume of distribution (Vd) was found to depend on weight and serum albumin. The Vd was estimated to be 0.95 l/kg, assuming an albumin level of 3 g/dl. The Michaelis-Menten constant (km) was estimated to be 7.9 mg/l. The baseline maximum metabolic rate was 580 mg/day for a 70-kg patient. The average time to onset of induction was 59.5 hours. If a fever developed after induction began, it increased the extent of induction. This model was evaluated retrospectively in 26 additional patients, yielding a mean prediction error of -0.4 mg/l (-3.0-2.2 mg/l) and a mean absolute prediction error of 4.7 mg/l (3.2-6.2 mg/l) based on two-level feedback. Given the large interindividual variances in maximum metabolic rate, phenytoin levels should be measured frequently.  相似文献   

10.
The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of growth factor stimulation, and recent evidence suggests that G protein-coupled receptors transactivate growth factor receptors to transmit mitogenic effects. In the present study, we report the involvement of epidermal growth factor receptor (EGF-R) in Ang II-induced extracellular signal-regulated kinase (ERK) activation, c-fos gene expression, and DNA synthesis in cardiac fibroblasts. Ang II induced a rapid tyrosine phosphorylation of EGF-R in association with phosphorylation of Shc protein and ERK activation. Specific inhibition of EGF-R function by either a dominant-negative EGF-R mutant or selective tyrphostin AG1478 completely abolished Ang II-induced ERK activation. Induction of c-fos gene expression and DNA synthesis were also abolished by the inhibition of EGF-R function. Calmodulin or tyrosine kinase inhibitors, but not protein kinase C (PKC) inhibitors or downregulation of PKC, completely abolished transactivation of EGF-R by Ang II or the Ca2+ ionophore A23187. Epidermal growth factor (EGF) activity in concentrated supernatant from Ang II-treated cells was not detected, and saturation of culture media with anti-EGF antibody did not affect the Ang II-induced transactivation of EGF-R. Conditioned media in which cells were incubated with Ang II could not induce phosphorylation of EGF-R on recipient cells. Platelet-derived growth factor-beta receptor was not phosphorylated on Ang II stimulation, and Ang II-induced c-jun gene expression was not affected by tyrphostin AG1478. Our results demonstrated that in cardiac fibroblasts Ang II-induced ERK activation and its mitogenic signals are dominantly mediated by EGF-R transactivated in a Ca2+/calmodulin-dependent manner and suggested that the effects of Ang II on cardiac fibroblasts should be interpreted in association with the signaling pathways regulating cellular proliferation and/or differentiation by growth factors.  相似文献   

11.
12.
Cisplatin [cis-dichlorodiammine platinum (II)], a potent chemoimmunotherapeutic drug, activates macrophages to tumoricidal state which is inhibited by protein tyrosine kinase(s) inhibitor. Cisplatin induces protein tyrosine phosphorylation of a number of cellular proteins suggesting the involvement of protein tyrosine kinase(s) in the activation process of macrophages. Therefore, the effect of cisplatin treatment on the expression and activation of lyn, a protein tyrosine kinase of src family, in macrophages was investigated. The underlying mechanism of lyn expression and activation was also analyzed. Cisplatin treatment increased lyn expression and activation in macrophages within 5 min of treatment. The expression and activation of lyn were observed to be biphasic processes in cisplatin-treated macrophages with the first peak appearing at 15 min and the second peak at 2 h of treatment. The appearance of second phase of lyn activation and second phase of lyn expression were two unrelated processes. The second peak of lyn activation was produced by the autocrine action of some soluble product(s) of cisplatin-treated macrophages, whereas the second phase of lyn expression was due to some intracellular factor. It was further observed that cisplatin-induced lyn expression and activation involves serine/threonine phosphatases 1/2A, protein tyrosine phosphatases, protein tyrosine kinase and protein kinase C. It was also observed that Ca2+/calmodulin and calmodulin-dependent kinases are involved in the regulation of cisplatin-induced lyn expression and activation in macrophages.  相似文献   

13.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and calcineurin represent neuronal Ca2+-dependent enzymes which dynamically modify several common substrates in the mammalian brain via phosphorylation/dephosphorylation cycles. Studies in animal models indicate that altered expression and activity of these enzymes may be involved in epilepsy. We have analyzed their immunohistochemical distribution in hippocampi of 28 temporal lobe epilepsy (TLE) patients and 13 controls. TLE specimens were classified as Ammon's horn sclerosis (AHS) or focal lesions without alteration of hippocampal cytoarchitecture. Compared to control and lesion-associated TLE specimens, striking changes in the distribution pattern of both enzymes were found in the dentate gyrus (DG) of AHS specimens: Whereas CaMKII labeling was significantly increased in the granule cell somata and their proximal dendrites, calcineurin immunoreactivity was significantly reduced in the granule cell somata. Furthermore, calcineurin staining in controls showed high levels in the inner molecular layer with a sharp demarcation towards the outer molecular layer. In AHS, calcineurin staining was reduced in the inner molecular layer, with partial loss of this demarcation. These findings raise the possibility, that an up-regulation of CaMKII with a concomitant down-regulation of calcineurin in the DG of AHS specimens may cause a pathogenetically relevant imbalance of neuronal Ca2+/calmodulin-dependent phosphorylation/dephosphorylation systems.  相似文献   

14.
Translation elongation factor 1 alpha (EF-1 alpha) catalyzes the GTP-dependent binding of amino-acyl-tRNA to the ribosome. Previously, Tetrahymena 14-nm filament-associated protein was identified as EF-1 alpha [Kurasawa et al. (1992) Exp. Cell Res. 203, 251-258]. This and several other studies suggest that EF-1 alpha functions not only in translation but also in regulation of some part of the cytoskeleton. Tetrahymena EF-1 alpha bound to F-actin and induced bundling of F-actin. We investigated the effects of GTP/GDP and Ca2+/calmodulin on F-actin bundling activity of EF-1alpha. The presence of GTP, GDP, or guanylyl-imidodiphosphate (GMP-PNP) slightly decreased the amount of EF-1 alpha which bound to F-actin, but each had virtually no effect on the F-actin bundling activity. The formation of F-actin bundles by EF-1 alpha was Ca(2+)-insensitive. In the absence of Ca2+, calmodulin did not bind to EF-1 alpha and F-actin. On the other hand, in the presence of Ca2+, calmodulin directly bound to EF-1 alpha but did not have any serious influence on EF-1 alpha/F-actin binding. Under the conditions, electron microscopy demonstrated that Ca2+/calmodulin completely inhibited the F-actin bundling by EF-1 alpha. These results indicate that CA2+/calmodulin regulates the F-actin bundling activity of EF-1 alpha without inhibition of the binding between Ef-1 alpha and F-actin.  相似文献   

15.
16.
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the phosphatase calcineurin (CaN) are especially abundant in the mammalian CNS, where they have been implicated repeatedly in different neuronal functions. CaMKII is a holoenzyme that is likely to be constituted of both homomultimers and heteromultimers, CaMKIIalpha and CaMKIIbeta being the most abundant subunits in the brain. CaN is a heterodimer constituted of a catalytic subunit (CaN A) and a regulatory subunit (CaN B), and CaN Aalpha is the predominant form in the brain. We studied the expression of CaMKIIalpha, CaMKIIbeta, and CaN Aalpha subunit messenger RNAs in the mouse hippocampus at different times after the administration of a convulsant dose of kainic acid. CaMKIIalpha and CaN A immunohistochemistry was also performed. We observed a transient decrease in the three messenger RNAs in the kainic acid-treated mice, peaking at 5 or 24 h of treatment. The effect had disappeared completely 8 days after treatment. No significant alterations in CaMKII or CaN immunolabelling were observed in the hippocampus of kainic acid-treated mice. The observed modifications could be due to the neuronal hyperexcitability induced by kainic acid rather than neuronal degeneration, because no areas of neuronal loss were detected. Our results suggest that the expression of CaMKII and CaN mRNAs is down-regulated in neuronal cells in response to the hyperexcitability induced by kainic acid. The transient nature of the effect and the apparent absence of significant modifications in the amount of their corresponding proteins may be related to the absence of neuronal damage.  相似文献   

17.
18.
Previously, we utilized small-angle X-ray scattering and neutron scattering with contrast variation to obtain the first low-resolution structure of 4Ca2+.calmodulin (CaM) complexed with a functional enzyme, an enzymatically active truncation mutant of skeletal muscle myosin light chain kinase (MLCK). These experiments showed that, upon binding to MLCK, CaM undergoes a conformational collapse identical to that observed when CaM binds to the isolated peptide corresponding to the CaM binding sequence of MLCK. CaM thereby was shown to release the inhibition of the kinase by inducing a significant movement of its CaM binding and autoinhibitory sequences away from the surface of the catalytic core [Krueger, J. K., Olah, G. A., Rokop, S. E., Zhi, G., Stull, J. T., and Trewhella, J. (1997) Biochemistry 36, 6017-6023]. We report here similar scattering experiments on the CaM.MLCK complex with the addition of substrates; a nonhydrolyzable analogue of adenosine-triphosphate, AMPPNP, and a peptide substrate for MLCK, a phosphorylation sequence from myosin regulatory light chain (pRLC). These substrates are shown to induce an overall compaction of the complex. The separation of the centers-of-mass of the CaM and MLCK components is shortened (by approximately 12 A), thus bringing CaM closer to the catalytic site compared to the complex without substrates. In addition, there appears to be a reorientation of CaM with respect to the kinase upon substrate binding that results in interactions between the N-terminal sequence of CaM and the kinase that were not observed in the complex without substrates. Finally, the kinase itself becomes more compact in the CaM.MLCK.pRLC.AMPPNP complex compared to the complex without substrates. This observed compaction of MLCK upon substrate binding is similar to that arising from the closure of the catalytic cleft in cAMP-dependent protein kinase upon binding pseudosubstrate.  相似文献   

19.
20.
Ca2+ plays a central role in cell signaling, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+ actions. The spatial distribution of intracellular Ca2+ signaling is not homogenous, rather it is dynamically organized, and it has been speculated that spatial patterns of Ca2+ signals may function as a form of cellular information transmitted to downstream molecules. To address this issue, we studied the intracellular distributions of the signalings by CaMKII and Ca2+ in the same astrocytes. The former was visualized by monitoring site-specific phosphorylation of a cytoskeletal protein vimentin, using site- and phosphorylation-specific antibodies, while the latter was examined by fura-2-based Ca2+ microscopy. Local Ca2+ signals induced vimentin phosphorylation by CaMKII localized in the same area. On the other hand, Ca2+ waves in astrocytes induced global phosphorylation of vimentin by CaMKII. A small population of vimentin filaments highly phosphorylated by CaMKII underwent structural alteration into short filaments at electron microscopic level. These results indicate that CaMKII transmits spatial patterns of Ca2+ signals to vimentin as cellular information. The possibility is discussed that spatial patterns of vimentin phosphorylation may be important for intracellular organization of vimentin filament networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号