首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nuclear envelope of Xenopus laevis stage VI oocytes was studied in a high‐resolution field emission cryo‐scanning electron microscope to compare the level of structural preservation obtainable by different procedures of specimen preparation. All approaches generally allowed frequent detection of long filaments of about 10 nm in diameter that were attached to the nuclear envelope's inner membrane facing the nuclear interior. Structural details of these 10‐nm filaments, however, could not be unveiled by standard procedures of specimen preparation and analysis, including critical point drying and imaging at room temperature. In contrast, after freeze‐drying and imaging at ?100°C, the 10‐nm filament type was found to be composed of distinct globular subunits of approximately 5 nm in diameter that were arranged in a helical manner with right‐handed periodicity. Stereoscopic images showed that some of these filaments were lying directly on the membrane whereas others appeared to hover at a certain distance above the nuclear envelope. The appearance of these filaments was highly similar to that of in vitro polymerized F‐actin analysed in parallel, and closely resembled the structural characteristics of F‐actin filaments described earlier. By virtue of their structural features we therefore conclude that these filaments at the nuclear periphery represent F‐actin. The high level of structural resolution obtainable by field emission cryo‐SEM illustrates the potential of this method for studying details of biological structures in a subcellular context.  相似文献   

2.
In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single‐shot soft X‐ray contact microscopy is presented. High resolved X‐ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X‐ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid‐state X‐ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X‐ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X‐ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high‐quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.  相似文献   

3.
Atomic force microscopy (AFM) proved to be able to obtain high‐resolution three‐dimensional images of single‐membrane proteins, isolated, crystallized, or included in reconstructed model membranes. The extension of this technique to native systems, such as the protein immersed in a cell membrane, needs a careful manipulation of the biological sample to meet the experimental constraints for high‐resolution AFM imaging. In this article, a general protocol for sample preparation is presented, based on the mechanical stretch of the cell membrane. The effectiveness for AFM imaging has been tested on the basis of an integrated optical and AFM approach and the proposed method has been applied to cells expressing cystic fibrosis transmembrane conductance regulator, a channel involved in cystic fibrosis, showing the possibility to identify and analyze single proteins in the plasma membrane. Microsc. Res. Tech. 76:723–732, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Xenopus oocytes contain a complex cytoskeleton composed of three filament systems: (1) microtubules, composed of tubulin and at least three different microtubule-associated proteins (XMAPs); (2) microfilaments composed of actin and associated proteins; and (3) intermediate filaments, composed of keratins. For the past several years, we have used confocal immunofluorescence microscopy to characterize the organization of the oocyte cytoskeleton throughout the course of oogenesis. Together with computer-assisted reconstruction of the oocyte in three dimensions, confocal microscopy gives an unprecedented view of the assembly and reorganization of the cytoskeleton during oocyte growth and differentiation. Results of these studies, combined with the effects of cytoskeletal inhibitors, suggest that organization of the cytoskeleton in Xenopus oocytes is dependent upon a hierarchy of interactions between microtubules, microfilaments, and keratin filaments. This article presents a gallery of confocal images and 3-D reconstructions depicting the assembly and organization of the oocyte cytoskeleton during stages 0-VI of oogenesis, a discussion of the mechanisms that might regulate cytoskeletal organization during oogenesis, and speculates on the potential roles of the oocyte cytoskeleton during oogenesis and axis formation.  相似文献   

5.
Atomic force microscopy (AFM) has been shown to be a suitable tool to probe biophysical properties of cells and cell fragments. We analysed biophysical alterations of human platelets by AFM using streptolysin O (SLO) as a model for pore forming proteins. Permeabilization of platelet membrane by SLO was confirmed by transmission electron and confocal microscopy. Using force volume imaging combined with FIEL analysis we were able to show dynamically the increase in the elasticity of platelets during the pore formation by SLO and could correlate the viscoelasticity to the morphology of platelets. Stabilizing the actin cytoskeleton by phalloidin resulted in partial restoration of the elasticity indicating that loss of stability in platelets by SLO is mediated by alterations of both plasma membrane and cytoskeleton.  相似文献   

6.
There is a substantial body of information indicating that 18‐methyleicosanoic acid (18‐MEA) is covalently linked to the outer surface of all mammalian keratin fibres and also forms the outer β‐layer of the cuticular cell membrane complex (CCMC) which separates the cuticle cells from each other. Low cohesive forces are expected between the lipid‐containing outer β‐layer and the δ‐layer of the CCMC, thus providing a weak point for cuticular delamination and presenting a fresh layer of 18‐MEA to the newly exposed surface. We have used lateral force microscopy and force modulation atomic force microscopy (AFM) to examine human hair fibres in which the non‐covalently linked fatty acids have been removed. Examination of the lateral force images of new cuticle surfaces revealed by the attrition of overlying cuticle layers showed three separate zones of clearly defined frictional contrast. These are thought to correspond with the δ‐layer, the proteinaceous epicuticle and outer β‐layers of the CCMC. The δ‐layer was found to have a thickness of 16 nm (SD = 1 nm, n = 25), comparable to the 18.0 nm thickness measured from transverse cross‐sections of fibres with transmission electron microscopy. Force modulation AFM showed that the outer β‐layer was softer than the epicuticle and the δ‐layer. The frictional contrast was removed following treatment with methanolic KOH (0.1 mol dm?3) at 25 °C for 30 min, suggesting the hydrolysis of the thioester linkage and removal of 18‐MEA from the surface.  相似文献   

7.
We employed magnetic ACmode atomic force microscopy (MACmode AFM) as a novel dynamic force microscopy method to image surfaces of biological membranes in their native environments. The lateral resolution achieved under optimized imaging conditions was in the nanometer range, even when the sample was only weakly attached to the support. Purple membranes (PM) from Halobacterium salinarum were used as a test standard for topographical imaging. The hexagonal arrangement of the bacteriorhodopsin trimers on the cytoplasmic side of PM was resolved with 1.5nm lateral accuracy, a resolution similar to images obtained in contact and tapping-mode AFM. Human rhinovirus 2 (HRV2) particles were attached to mica surfaces via nonspecific interactions. The capsid structure and 2nm sized protein loops of HRV2 were routinely obtained without any displacement of the virus. Globular and filamentous structures on living and fixed endothelial cells were observed with a resolution of 5-20nm. These examples show that MACmode AFM is a favorable method in studying the topography of soft and weakly attached biological samples with high resolution under physiological conditions.  相似文献   

8.
Lau JM  You HX  Yu L 《Scanning》2002,24(5):224-231
Plasma membrane from Xenopus laevis oocytes has been used as a model system to study membrane structure and particle components, including native and exogenously expressed proteins. Previous studies by electron microscopy (EM) and atomic force microscopy (AFM) compared intramembrane particles (IMPs) on uninjected oocyte membranes to oocytes expressing proteins of interest. These studies observed randomly distributed IMPs on the surface of the oocyte plasma membrane. In this paper, we introduce a novel technique to isolate oocyte membranes by bursting the oocyte and depositing its membrane on a flat mica substrate. The flat surface membrane preparation allows high-resolution AFM images to beobtained, revealing a novel structure of densely packed particles. These particles exhibit a regular, repeating pattern of a lattice-like array with orderly packing and are thus termed "lattice-like array particles" (LAPs). The LAPs are orderly yet imperfectly packed, are located in depressed pools, occur with a low frequency on the oocyte membrane surface, and have not previously been seen using other isolation and imaging methods. Histogram analysis of the center-to-center distance between LAPs suggest their size to be about 44 nm in diameter, considerably larger than other reported size estimates of IMPs. These results indicate that LAPs represent a novel membrane particle organization, which merits further study.  相似文献   

9.
We present a custom-designed atomic force fluorescence microscope (AFFM), which can perform simultaneous optical and topographic measurements with single molecule sensitivity throughout the whole visible to near-infrared spectral region. Integration of atomic force microscopy (AFM) and confocal fluorescence microscopy combines the high-resolution topographical imaging of AFM with the reliable (bio)-chemical identification capability of optical methods. The AFFM is equipped with a spectrograph enabling combined topographic and fluorescence spectral imaging, which significantly enhances discrimination of spectroscopically distinct objects. The modular design allows easy switching between different modes of operation such as tip-scanning, sample-scanning or mechanical manipulation, all of which are combined with synchronous optical detection. We demonstrate that coupling the AFM with the fluorescence microscope does not compromise its ability to image with a high spatial resolution. Examples of several modes of operation of the AFFM are shown using two-dimensional crystals and membranes containing light-harvesting complexes from the photosynthetic bacterium Rhodobacter sphaeroides.  相似文献   

10.
We report in vivo nonlinear optical imaging of mouse sciatic nerve tissue by epidetected coherent anti‐Stokes Raman scattering and second harmonic generation microscopy. Following a minimally invasive surgery to open the skin, coherent anti‐Stokes Raman scattering imaging of myelinated axons and second harmonic generation imaging of the surrounding collagen fibres were demonstrated with high signal‐to‐background ratio, three‐dimensional spatial resolution, and no need for labelling. The underlying contrast mechanisms of in vivo coherent anti‐Stokes Raman scattering were explored by three‐dimensional imaging of fat cells that surround the nerve. The epidetected coherent anti‐Stokes Raman scattering signals from the nerve tissues were found to arise from interfaces as well as back reflection of forward coherent anti‐Stokes Raman scattering.  相似文献   

11.
Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra‐sensitive strain gauge and the Z‐axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping. Microsc. Res. Tech. 77:749–753, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Shear force near‐field microscopy on biological samples in their physiological environment loses considerable sensitivity and resolution as a result of liquid viscous damping. Using a bimorph‐based cantilever sensor incorporating force feedback, as recently developed by us, gives an alternative force detection scheme for biological imaging in liquid. The dynamics and sensitivity of this sensor were theoretically and experimentally discussed. Driving the bimorph cantilever close to its resonance frequency with appropriate force feedback allows us to obtain a quality factor (Q‐factor) of up to 103 in water, without changing its intrinsic resonance frequency and spring constant. Thus, the force detection sensitivity is improved. Shear force imaging on mouse brain sections and human skin tissues in liquid with an enhanced Q‐factor of 410 have shown a high sensitivity and stability. A resolution of about 50 nm has been obtained. The experimental results suggest that the system is reliable and particularly suitable for biological cell imaging in a liquid environment.  相似文献   

13.
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X‐ray spectroscopy; and transmission electron microscopy (TEM) for high‐resolution imaging. FIB was used to prepare thin sections of the cell‐material interface for TEM, or for three‐dimensional electron tomography. Cells were cultured on laser‐sintered Ti‐6Al‐4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell‐material cross‐sectional interface at the single cell level across multiple high‐resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell‐material interface.  相似文献   

14.
15.
This paper analyses the three‐dimensional (3‐D) surface morphology of optic surface of unworn contact lenses (CLs) using atomic force microscopy (AFM) and wavelet transform. Refractive powers of all lens samples were 2.50 diopters. Topographic images were acquired in contact mode in air‐conditioned medium (35% RH, 23°C). Topographic measurements were taken over a 5 µm × 5 µm area with 512 pixel resolution. Resonance frequency of the tip was 65 kHz. The 3‐D surface morphology of CL unworn samples revealed (3‐D) micro‐textured surfaces that can be analyzed using (AFM) and wavelet transform. AFM and wavelet transform are accurate and sensitive tools that may assist CL manufacturers in developing CLs with optimal surface characteristics. Microsc. Res. Tech. 78:1026–1031, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Filamentous bacteriophage has been proposed as a vehicle that can carry and deliver therapeutics into mammalian cells for disease treatment, thus a protocol for imaging phage‐cell interaction is essential. Because high signal intensity is necessary to study the mechanism of interaction between filamentous bacteriophage and mammalian cells, it is important to optimize the procedure for fluorescence labeling of phage in order to understand such interaction. Here, we describe a procedure that gives intense fluorescence labeling and can show interactions between fd‐tet bacteriophage selected from phage libraries and mammalian cells (SKBR‐3 and MCF‐10A). The indirect labeling of phage with dye‐conjugated antibody and cytoskeleton associated proteins was significantly enhanced in the presence of a cross‐linking reagent called dithiobissuccinimidylpropionate (DSP) as shown by qualitative and quantitative fluorescence microscopy. The use of DSP resulted in high signal intensity in fluorescence imaging of phage‐cell complex. The DSP cross‐linker is believed to preserve soluble unbound proteins for fluorescence imaging. The interaction between the phage and mammalian cells was further confirmed by scanning electron microscopy. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The protein surface layer of the bacterium Deinococcus radiodurans (HPI layer) was examined with an atomic force microscope (AFM). The measurements on the air-dried, but still hydrated layer were performed in the attractive imaging mode in which the forces between tip and sample are much smaller than in AFM in the repulsive mode or in scanning tunnelling microscopy (STM). The results are compared with STM and transmission electron microscopy (TEM) data.  相似文献   

18.
Recent studies have revealed that water‐dispersible colloids play an important role in the transport of nutrients and contaminants in soils. In this study, water‐dispersible colloids extracted from saline–alkali soils have been characterized by atomic force microscopy (AFM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and UV absorption spectra. AFM observation indicated that the water‐dispersible colloids contain some large plates and many small spherical particles. XRD, XPS, and UV absorption measurement revealed that the water‐dispersible colloids are composed of kaolinite, illite, calcite, quartz and humic acid. In addition, UV absorption measurement demonstrated that the humic acids are associated with clay minerals. Water‐dispersible colloids in the saline–alkali soils after hydrolyzed polymaleic anhydride treatment and an agricultural soil (nonsaline–alkali soil) were also investigated for comparison. The obtained results implied that the saline–alkali condition facilitates the formation of a large quantity of colloids. The use of AFM combined with spectrometric methods in the present study provides new knowledge on the colloid characteristics of saline–alkali soils. Microsc. Res. Tech. 79:525–531, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
We present the first in vivo study of diatoms using atomic force microscopy (AFM). Three chain‐forming, benthic freshwater species –Eunotia sudetica, Navicula seminulum and a yet unidentified species – are directly imaged while growing on glass slides. Using the AFM, we imaged the topography of the diatom frustules at the nanometre range scale and we determined the thickness of the organic case enveloping the siliceous skeleton of the cell (10 nm). Imaging proved to be stable for several hours, thereby offering the possibility to study long‐term dynamic changes, such as biomineralization or cell movement, as they occur. We also focused on the natural adhesives produced by these unicellular organisms to adhere to other cells or the substratum. Most man‐made adhesives fail in wet conditions, owing to chemical modification of the adhesive or its substrate. Diatoms produce adhesives that are extremely strong and robust both in fresh‐ and in seawater environments. Our phase‐imaging and force‐pulling experiments reveal the characteristics of these natural adhesives that might be of use in designing man‐made analogues that function in wet environments. Engineering stable underwater adhesives currently poses a major technical challenge.  相似文献   

20.
The actin cytoskeleton is a main component of cells and it is crucially involved in many physiological processes, e.g. cell motility. Changes in the actin organization can be effected by diseases or vice versa. Due to the nonuniform pattern, it is difficult to quantify reasonable features of the actin cytoskeleton for a significantly high cell number. Here, we present an approach capable to fully segment and analyse the actin cytoskeleton of 2D fluorescence microscopic images with a special focus on stress fibres. The extracted feature data include length, width, orientation and intensity distributions of all traced stress fibres. Our approach combines morphological image processing techniques and a trace algorithm in an iterative manner, classifying the segmentation result with respect to the width of the stress fibres and in nonfibre‐like actin. This approach enables us to capture experimentally induced processes like the condensation or the collapse of the actin cytoskeleton. We successfully applied the algorithm to F‐actin images of cells that were treated with the actin polymerization inhibitor latrunculin A. Furthermore, we verified the robustness of our algorithm by a sensitivity analysis of the parameters, and we benchmarked our algorithm against established methods. In summary, we present a new approach to segment actin stress fibres over time to monitor condensation or collapse processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号