首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
利用Aspex Explorer夹杂物快速分析仪对55SiCr弹簧钢RH处理过程中T.O含量以及夹杂物的形貌、成分、数量、尺寸大小进行了系统研究。结果表明,钢水的T.O含量和夹杂物数量随RH真空处理时间的增加而降低,但降低速度越来越慢。RH真空处理过程中夹杂物主要为球状、含有少量MgO的SiO2-Al2O3-CaO系夹杂物,其成分向SiO2含量增加、Al2O3含量降低的方向移动,且逐渐转变为液相夹杂物。真空处理25min时,夹杂物的去除率分别达到86.24%和87.85%。1~9μm的小颗粒夹杂物数量随真空处理时间的增加而减少,而尺寸大于9μm的夹杂物数量则先增加后减少,RH真空处理时间为15min时达到最大值。  相似文献   

2.
采用ASPEX扫描电镜,对中碳铝镇静钢LF精炼初期、LF精炼结束、RH破空、RH软吹结束、连铸浇铸中期中包钢中3μm以上夹杂物进行检验,结果表明LF精炼初期钢中夹杂物个数最多,尺寸较大,经LF处理后夹杂物个数最少、尺寸最小;RH真空处理后夹杂物个数明显增多,尺寸增大,软吹后夹杂物个数虽有所减少,但平均尺寸略有上升;连铸过程钢中夹杂物明显增多,且尺寸增大。并分析了LF-RH-CC过程Ca O-Mg O-Al2O3系夹杂物的变化。  相似文献   

3.
在实验室用真空感应炉冶炼3炉X65管线钢,其中2炉钢进行镁处理。分析非镁处理钢和镁处理钢中夹杂物的变化特征,研究镁处理对X65管线钢中夹杂物的影响。结果表明:1)非镁处理钢中的夹杂物主要是Al_2O_3系夹杂,镁处理钢中的夹杂物类型主要是MgO-Al_2O_3系夹杂;2)镁处理钢中粒径小(1~5μm)的夹杂物比例相对较高,大颗粒( 15μm)夹杂物明显减少;3)粒径较大的夹杂物主要是Al_2O_3夹杂和靠近低熔点区域的夹杂,靠近镁铝尖晶石成分的夹杂物粒径较小,说明镁处理可使钢中夹杂物变得细小而分散;4)镁处理钢中存在大量的尺寸细小的MgO·Al_2O_3系夹杂物,可以为硫化物的析出提供形核核心,从而减少硫化物在晶界的析出数量。  相似文献   

4.
为了提高大锻件用钢质量,控制夹杂物形态、尺寸、数量并使其均匀分布十分重要。Ⅵ法的实质就是在RH真空脱气过程中进行钢包喷粉。Ⅵ处理以后,钢中的夹杂物呈球状,其数量明显减少。用图象分析方法测定夹杂物面积百分数为0.02~0.03%,夹杂物平均尺寸为2~4μm。大量生产数据的统计分析表明,钢中夹杂物的数量与钢中氧含量、出钢温度及Ⅵ处理时间的自然对数的倒数有正相关关系。夹杂物尺寸与钢包砖缝泥料中SiO_2%及Ⅵ处理时间亦有正相关关系。  相似文献   

5.
罗艳  杨文  刘占礼  姜静宇 《炼钢》2023,(2):28-35
为提高Q345D风电钢VD精炼过程大尺寸夹杂物的去除效率,展开了VD底吹工艺优化试验研究。在VD真空处理前,方案1即VD精炼高真空的前10 min底吹单孔流量400 L/min、后5 min单孔流量250 L/min条件下,钢中夹杂物主要为高Al2O3含量的钙铝酸盐,而优化方案2~3即VD精炼高真空的前10 min底吹单孔流量500 L/min、后5 min单孔流量150~100 L/min条件下钢中夹杂物平均成分为更低熔点钙铝酸盐;VD处理后钢中夹杂物均为低熔点夹杂物。方案1中VD精炼过程大于10μm和大于15μm的夹杂物平均尺寸分别增加66.24%和62.32%;方案2中大于10μm和大于15μm的夹杂物的平均尺寸分别增加23.40%和33.39%,尤其夹杂物数密度仅分别增加16.33%和28.57%。这充分说明了VD精炼过程高真空的前10 min强搅拌、后5 min中强搅拌的工艺有利于对大颗粒夹杂物的去除,同时减小卷渣概率。  相似文献   

6.
通过SEM、EDS和大样电解试验对28MnCr5冶炼过程中夹杂物的大小、形貌、数量进行了分析。结果表明:LF精炼后夹杂物多为钙镁铝氧化物及硫化钙夹杂,夹杂物的尺寸较小,多为1μm~3μm,形状为方形。经VD处理后,较LF阶段夹杂物尺寸增大,夹杂物的组成多是钙镁铝尖晶石类及MnS夹杂。连铸过程中夹杂物的成分主要为MgO-Al2O3-MnS-MnO系夹杂物,夹杂物多呈圆形,其尺寸在3μm~6μm。通过大样电解发现大部分大型夹杂物都是多元复合夹杂物,颗粒粒径多在100μm以上,对钢材性能影响极大。  相似文献   

7.
杨光维  陈兆平  柳向椿  徐超 《炼钢》2019,35(6):31-34,45
采用蔡司电镜+INCA软件对宝山钢铁股份有限公司齿轮钢VD镇静过程钢中夹杂物进行自动检测,发现大于5μm夹杂物数量与大于10μm夹杂物数量成正相关,而且随着镇静时间的增加先减少后增加。VD镇静过程最大夹杂物主要是球状CaO-Al_2O_3+MgO-Al_2O_3复合夹杂物,而且随着夹杂物中CaO-Al_2O_3面积占比的增加,最大夹杂物尺寸增大。建议镇静时间控制在15 min左右。  相似文献   

8.
为了更好地控制WG350无取向电工钢中的夹杂物,采用扫描电子显微镜、Aspex系统分析了精炼、连铸过程和成品板中夹杂物的类型、数量及尺寸的演变规律。结果表明,氩站开始出现大尺寸含P复合夹杂物,该类型夹杂物大部分在RH脱碳后会上浮去除。RH加铝脱氧时生成的Al_2O_3以团簇状和块状为主,前者尺寸范围为0.5~5μm且大部分被去除,而块状Al_2O_3会一直遗留至成品中。RH合金化后,钢液中夹杂物数量达到最大,夹杂物类型除Al_2O_3外,主要还有复合氧化物、复合氧硫化物。成品板中夹杂物种类及数量关系为:氧硫化物氧化物氮化物氮化物+氧化物氮化物+硫化物氮-氧-硫复合物硫化物。钢中氧硫(质量分数)由49×10~(-6)降低至13×10~(-6)时,夹杂物种类及数量均会大幅度减少。  相似文献   

9.
分析了RH软吹30 min过程中轴承钢夹杂物的行为变化。结果表明,软吹前25 min,钢中总氧含量由12×10-6降低到8×10-6;软吹25~30 min时钢中总氧含量略有回升。钢中夹杂物的数量随着软吹时间的增加而减少,软吹20 min后大于80μm的较大尺寸夹杂物基本去除;继续增加软吹时间,有利于进一步去除钢中的夹杂物;但夹杂物类型随软吹时间的增加变化不大。随着软吹时间的延长,钢水温降增大,对后续浇注造成不利影响。综合考虑夹杂物的去除效果、软吹过程的温降和高效化生产等因素,认为轴承钢软吹时间控制在20~25 min较为合理。  相似文献   

10.
摘要:为了更好地控制WG350无取向电工钢中的夹杂物,采用扫描电子显微镜、Aspex系统分析了精炼、连铸过程和成品板中夹杂物的类型、数量及尺寸的演变规律。结果表明,氩站开始出现大尺寸含P复合夹杂物,该类型夹杂物大部分在RH脱碳后会上浮去除。RH加铝脱氧时生成的Al2O3以团簇状和块状为主,前者尺寸范围为0.5~5μm且大部分被去除,而块状Al2O3会一直遗留至成品中。RH合金化后,钢液中夹杂物数量达到最大,夹杂物类型除Al2O3外,主要还有复合氧化物、复合氧硫化物。成品板中夹杂物种类及数量关系为:氧硫化物>氧化物>氮化物>氮化物+氧化物>氮化物+硫化物>氮 氧 硫复合物>硫化物。钢中氧硫(质量分数)由49×10-6降低至13×10-6时,夹杂物种类及数量均会大幅度减少。  相似文献   

11.
The variational regulation of inclusions and total oxygen in the IF Molten Steel during the RH refining process after deoxidization was studied. The results show that the relationship between total oxygen content and time is in accord with the following equation, T.O=271.25e-1.53t+23.49, R2=0.9966.The inclusion analysis investigation during RH pure circulation process indicates that the main inclusion of the IF molten steel after 2 minutes from the beginning of deoxidization is cluster inclusions of pure Al2O3 system. After 6 minutes from the aluminum deoxidization, the quantity of inclusion decreases and the inclusion style changes into block inclusions of Al2O3 system with the size of 5μm. In the other hand, some inclusions are of Al2O3-MgO. Complex inclusions of Al2O3-TiOx with the size of below 5μm, and the single particle or cluster complex inclusions with the typical square shape of Al2O3-TiN system are found after 3 minutes from titanium-ferrous alloy added. Then, the content of titanium of complex inclusions of Al2O3-TiOx decreases and the aluminum content rises along with the RH pure circulation time process. That means the inclusions of Al2O3-TiOx is not steady, and it trends to transfer into Al2O3.  相似文献   

12.
王昆鹏  王郢  谢伟  徐建飞  陈廷军  姜敏 《钢铁》2023,58(1):108-115
 钢中尖晶石夹杂物不仅会恶化钢的可浇性,还可能导致成品出现宏观夹杂物,RH真空处理是去除钢中夹杂物的重要环节。对RH真空处理过程高碳铬轴承钢夹杂物数量、成分和类型变化开展研究,通过热力学计算讨论了真空压力对高碳铬轴承钢尖晶石夹杂物稳定性的影响。试验结果表明,当真空压力为30 Pa时,真空处理10 min,钢液循环总量达200~400 t,尖晶石夹杂物全部消失。真空处理15 min,夹杂物总数大幅降低,由480个/(200 mm2)降至97个/(200 mm2),夹杂物总数减少80%。真空处理后,钢中液态夹杂物数量增加且夹杂物呈高度液态化,与真空处理前相比,液态夹杂物的数量由44个/(200 mm2)增至71个/(200 mm2),增加61%,液态夹杂物占比由9%增至73%。尖晶石夹杂物全程为单一颗粒状,未发现其碰撞、聚集现象。热力学计算表明,真空条件下,高碳铬轴承钢中尖晶石夹杂物可被钢中碳还原分解,温度为1 600 ℃时,临界分解压力为16 000~22 000 Pa,真空度越高,越有利于尖晶石夹杂物的还原分解。真空压力为4 900 Pa时,真空处理7~14 min,钢液循环总量达511~1 022 t,尖晶石夹杂物即完全消失;真空度为20 400 Pa时,即便延长处理时间至40 min,将钢液循环总量增至2 360 t,尖晶石夹杂物仍存在。与夹杂物被“物理去除”的观点相比,真空条件下,尖晶石夹杂物被钢中碳还原分解能更好地解释真空过程尖晶石夹杂物的变化特征。  相似文献   

13.
分析了改进前120 t LD-LF-RH-240 mm×240 mm CC工艺生产F45MnVS非调质钢中硫化物夹杂形貌、尺寸、数量密度等特性。通过采取以下改进措施:(1)转炉出钢过程脱氧铝锭加入用环绕钢液冲击区域分时段、分批次方式;(2)使用不含有MnS夹杂物的低碳低硫锰铁等合金辅料;(3)LF精炼过程S线喂入分批次加入等。试验结果表明:改进工艺后,LF、RH、中间包、铸坯以及轧材所有钢中硫化物夹杂的尺寸均有所降低,铸坯边缘、铸坯1/4处以及铸坯中心的大尺寸(>5μm)夹杂物数量密度分别由改进前的35、83、51个/mm2下降至改进后的24、57、39个/mm2,降幅分别达到31.43%、31.33%、23.53%。改进后轧材中细系和粗系夹杂物评级均有所改善,夹杂物长宽比为0~3的比例由改进前的63.07%增加至改进后71.23%。  相似文献   

14.
为进一步提升RH精炼的冶炼效率,更好与高拉速连铸相匹配,对RH冶炼IF钢过程中加Ti时机和纯循环时间对夹杂物的影响开展了试验研究。结果表明,钢液中T.O质量分数在加Al 5 min后小于0.003 0%;夹杂物的数密度在合金化4~5 min后具有最小值,随后增加纯循环时间,夹杂物的数密度无明显变化。在300 t RH工业生产实践中,Al-Ti间隔时间为2 min、纯循环时间为5 min和Al-Ti间隔3 min、纯循环4 min的处理工艺可以保证钢液中的夹杂物充分上浮去除,夹杂物的数密度为0.7~0.8个/mm2,可以实现RH的高效化精炼。在Al-Ti间隔时间大于1 min、纯循环时间大于3 min的操作条件下钢液中未检测到尺寸大于50μm的夹杂物。基于以上工艺优化,IF钢的RH真空处理时间已经降低至20 min。向钢液中加入Al后主要形成Al2O3夹杂物,加入钛铁合金化后钢液中会形成富[Ti]区域,[Ti]将Al2O3还原而生成Al-Ti氧化物。随着[Ti]在钢液内的扩散以及...  相似文献   

15.
朱国森  邓小旋  季晨曦 《钢铁》2022,57(11):99-105
 大尺寸非金属夹杂物是引起超低碳钢冷轧钢板表面线状缺陷的重要原因。以IF钢为例,铸坯中大尺寸夹杂物主要有3类,即结晶器保护渣卷入后被凝固坯壳捕获;连铸过程中钢水二次氧化产生且未上浮去除的;钢液中未充分去除的夹杂物在浸入式水口处粘连、堵塞,后续堵塞物脱落被凝固坯壳捕获。钢液一次脱氧生成的夹杂物中,不低于100 μm的夹杂物在RH处理过程中较容易去除,100 μm以下的夹杂物受钢液的流动影响较大,特别是不超过20 μm的夹杂物由于其上浮时间长、钢液流动的跟随性好,去除难度较大。RH是超低碳钢最重要的精炼设备,也是夹杂物去除的关键环节,研究RH去除20 μm夹杂物的新技术具有重要的意义。研究了RH脱碳结束加铝后真空度对夹杂物去除的影响,创新性提出了低真空度去除不超过20 μm夹杂物的新技术。研究结果表明,与高真空度处理工艺(常规工艺)相比,低真空度(压力5 kPa)处理的钢液中夹杂物数量降低更显著,中间包钢液总氧质量分数平均降低0.000 2%,钢液增氮水平相当。冷轧钢板因炼钢原因导致的线状缺陷降级率比常规工艺降低了29%。夹杂物在钢液中的跟随性理论分析表明,低真空度处理工艺下RH内钢液循环流量和钢液流速减小,降低了RH处理过程中夹杂物随钢液的跟随性,提高了不超过20 μm夹杂物的去除效率,有效改善了水口堵塞程度、提高了轧板表面质量。  相似文献   

16.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

17.
 为了提高G102Cr18Mo高碳不锈轴承钢的洁净度、细化碳化物组织,采用真空感应熔炼、两次真空自耗重熔、大锻压比锻造的工艺路线,研究了真空处理及大锻压比锻造对化学成分、气体含量、夹杂物分布、二次枝晶间距及碳化物颗粒度的影响。研究结果表明,真空感应熔炼过程(VIM)中,随着铝含量的增加,碳的脱氧能力大幅降低,即使铝质量分数为0.003%也对碳的脱氧能力有明显的阻碍作用;真空自耗重熔过程(VAR)由于高的真空度、高的重熔温度等热力学条件以及反应动力学条件的改善,氧含量显著降低,第一次自耗重熔后氧质量分数从0.001 49%降低至0.000 57%,降低了61.7%,第二次自耗重熔后氧质量分数降低至0.000 50%。真空感应熔炼、真空自耗重熔过程,夹杂物的成分变化不大,主要以Al-Si夹杂为主,其次为Al2O3夹杂,再次为MnS夹杂、Mg-Al-Ca、Mg/Ca-Al夹杂。双真空冶炼后,钢中夹杂物主要为0~5 μm的细小夹杂物,未发现大于20 μm的夹杂,含有少量10~20 μm的夹杂,钢的洁净度大幅度提高。在真空自耗锭横断面上,从边部向芯部二次枝晶的形貌变化不大,二次枝晶间距逐渐增大,但是变化趋势缓慢,二次枝晶间距为85~95 μm,这主要得益于低的自耗重熔速度。对真空自耗锭进行大变形处理,最终锻造成40 mm的圆棒,碳化物颗粒的最大尺寸不大于20 μm,平均尺寸为15 μm,且没有碳化物聚集的现象。低的自耗重熔速度和大锻压比锻造是碳化物细化的关键。  相似文献   

18.
张正群 《特殊钢》2018,39(1):48-50
RH精炼过程加铝前IF钢(/%:≤0.005C,≤0.04Si,0.05~0.20Mn,≤0.015P,≤0.015S,0.03~0.06Als)中的氧含量为340×10-6~467×10-6,用Aspex扫描电镜研究了加铝后210 min钢中夹杂物类型、尺寸和数量,结果表明,IF钢在RH工序加铝脱氧后钢液中夹杂物的类型主要为氧化铝,随着RH循环时间的增加,钢液中夹杂物数量减少;加铝真空循环6 min后可进行合金化,进一步延长循环时间,钢液中夹杂物的去除速度减缓;加铝前IF钢液中的初始氧含量偏高时,可适当延长循环时间至8 min,再进行合金化。  相似文献   

19.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号