首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter experimentally demonstrates all-optical clock recovery and optical 3R regeneration for a 10-Gb/s nonreturn-to-zero (NRZ) format. The 3R regenerator has achieved 10 000-hop cascadability and 1 000 000-km transmission for a pseudorandom bit sequence (PRBS) of$2 ^7 -1$. A semiconductor-optical-amplifier-based Mach–Zehnder interferometer (SOA-MZI) as an NRZ to pseudoreturn-to-zero converter and a Fabry–PÉrot filter perform the all-optical clock recovery from an NRZ signal. A pair of SOA-MZIs combined with a synchronous modulator provides the 2R regeneration and retiming functions. The cascadablity of the 3R regenerator is investigated in a recirculating loop transmission experiment by eye diagram, bit-error rate, and$Q$-factor measurements. Transmission with the 3R regenerator shows significant performance improvement over that without 3R regeneration. A 100-hop cascadability is also demonstrated for PRBS$2 ^31 -1$, enabling 10 000-km error-free transmission with a low power penalty of 1.2 dB.  相似文献   

2.
This paper proposes and demonstrates a simulation model to systematically investigate jitter accumulations in cascaded all-optical 2R regenerators. The simulation results indicate that when the pattern dependence from the memory effect is minimized, the jitter accumulation depends critically on the degree of the regenerative nonlinearity. Studies of tradeoffs between the jitter from bandwidth limitation and the signal-to-noise-ratio degradation help identify the optimized regenerator bandwidth for various degrees of regenerative nonlinearity. The simulation then considers the pattern dependence from the memory effect and finds that it can severely degrade the cascadability of an optical 2R regenerator and can make it worse than that of a linear optical amplifier (optical 1R). The simulation results show good matches to the experimental results of an optical 2R regenerator based on a semiconductor optical amplifier based Mach-Zehnder interferometer. To overcome the jitter accumulation associated with the optical 2R regeneration, we experimentally demonstrate an optical 3R regenerator for optical nonreturn-to-zero signals with all-optical clock recovery. The experiments achieve more than 1000-hop cascadability for pseudorandom binary sequence 231-1 inputs with a 100-km recirculation loop using lab fiber. Field trial experiments then demonstrate a more than 1000-hop cascadability for a 3R spacing of 66 km and a 100-hop cascadability for a 3R spacing of 264 km.  相似文献   

3.
We demonstrate error-free dense-wavelength-division multiplexing (DWDM) transmission of 40 40-Gb/s channels with 100-GHz spacing over 10 000 km dispersion-managed fiber using carrier-suppressed return-to-zero differential-phase-shift keying (CSRZ-DPSK), enhanced foward-error correction, and all-Raman-amplified spans with 100-km terrestrial length.  相似文献   

4.
Homodyne detection of 4-Gb/s pilot-carrier binary-phase-shift-keyed (BPSK) optical signals using external-cavity semiconductor lasers synchronized by a linear phase-locked loop is discussed. A 215-1 pseudorandom binary sequence (PRBS) has been transmitted through a short fiber with a receiver sensitivity of -44.2 dBm or 72 photons/bit. After transmission through 167 km of standard single-mode fiber, the sensitivity is -43.6 dBm or 83 photons/bit. A balanced PIN/HEMT transimpedance receiver which has a 3-dB bandwidth from 100 kHz to 10.1 GHz and an average equivalent input noise current of 10.8 pA/√Hz is used  相似文献   

5.
The configuration of a practical nonrepeatered coherent optical transmission system and its performance are reported. The practicability of combining continuous-phase frequency-shift keying (CPFSK) with erbium-doped fiber amplifier (EDFA) boosters is verified by laboratory and field experiments. A system gain of 60.8 dB is achieved at a BER at 10-11; the EDFA's optical output power is +18 dBm and the receiver sensitivity is -42.8 dBm. The stimulated Brillouin scattering (SBS) effect is examined to estimate the dependence of error rate characteristics on the bit sequence length. No power penalty is observed for a pseudorandom bit sequence (PRBS) of more than 25-1 or STM-16 patterns containing a 30-byte block of consecutive identical digits. The power penalty of 1.3 dB caused by the 310-km non-dispersion-shifted transmission fiber is successfully compensated by installing a chromatic dispersion compensator in each orthogonal polarization branch. During a four month field experiment, error-free operation was observed over a 30 day period, and the long-term error rate is under 6×10-16  相似文献   

6.
An all-optical converter from return-to-zero (RZ) pulses to the nonreturn-to-zero (NRZ) format is presented. The converter operates in two stages: the laser generated in a gain-clamped semiconductor optical amplifier (SOA) is modulated with the data signal; afterwards this signal is wavelength-converted by cross-gain modulation in a common SOA. The setup is noninverting and can feature wavelength conversion. Experimental error-free conversion from 5- and 40-ps RZ pulses to NRZ format is presented at 10 Gb/s using a 211-1 bit sequence  相似文献   

7.
A 16 Gb/s electrically time-division-multiplexed lightwave link is discussed. The 16 Gb/s electronic signal was generated by multiplexing together eight copies of the 2-Gb/s pseudorandom sequence (length 215-1) produced by a commercial BER test set. A 22-km transmission distance was achieved using a directly modulated, 1.3-μm wavelength DFB laser and a 50-Ω p-i-n receiver. Receiver sensitivity for a BER of 10-9 was -2.0 dBm. The addition of an optical preamplifier required a more sensitive receiver to avoid saturation-induced distortion in the preamplifier. This was accomplished by reducing the 2-Gb/s word length to 24 b, thereby lowering the intersymbol interference penalty and effectively increasing the receiver sensitivity. Under these conditions, the optical preamplifier receiver sensitivity was -19 dBm, and a 64.5-km transmission was demonstrated  相似文献   

8.
340 Gb/s (seventeen 20-Gb/s 231-1 PRBS NRZ channels) were transmitted through 150 km of fiber with 50 km amplifier spacing. Chromatic dispersion penalties and four-photon mixing effects were minimized by dispersion management  相似文献   

9.
We report, for the first time, tunable all-optical wavelength conversion of 160-Gb/s return-to-zero (RZ) optical signals based on cascaded sum- and difference-frequency generation in a periodically poled LiNbO3 waveguide. The distorted signals due to limited phase-matching bandwidth during conversion were compensated by spectral reshaping. We achieved error-free tunable wavelength conversion with a bit-error rate of less than 10-9 for 160-Gb/s RZ signals in a 23-nm tuning range over the C-band  相似文献   

10.
The transport performance of a regional area wavelength division multiplexing (WDM) transparent optical network is studied. We present excellent performance results (Q factors for all received signals greater than 10 with small power penalties) for a ring network based on application-optimized cost-effective optical layer components and fiber. The network consists of six network nodes, interconnected with 86.5-km spans of uncompensated negative dispersion fiber, resulting in a maximum transmission distance around the ring of 519 km, and it supports 32 directly modulated channels operating at 2.5 Gb/s (80-Gb/s network capacity). The novel design of the network nodes ensures great flexibility in terms of scalability and transparency, as well as great performance. To our knowledge, the capacity-length product of this transparent network, using cost-effective directly modulated lasers (DMLs) and no dispersion compensation, is the highest ever reported  相似文献   

11.
Homodyne detection of 1 Gb/s pilot-carrier (BPSK) optical signals using phase-locked 1.5 μm external-cavity semiconductor lasers is discussed. After 209 km fiber transmission of a 215-1 pseudorandom binary sequence (PRBS), the measured receiver sensitivity is 52.2 dBm or 46 photons/bit. Experimental evidence of the data-to-phase-lock crosstalk that potentially limits the usable ratio of linewidth to bit rate in pilot-carrier PSK homodyne systems is presented  相似文献   

12.
In this letter, we present new experimental results obtained for direct intensity modulation of widely tunable sampled-grating distributed Bragg-reflector (SGDBR) lasers. These results are of significance to SGDBR applications in wavelength-division-multiplexing systems. The devices described operate in the C-band (wavelength range 1525-1565 nm). A 6-GHz small-signal modulation bandwidth and >10-dB signal extinction ratio under large-signal operation were obtained. We have also recorded an undistorted eye pattern for a nonreturn-to-zero random signal 231-1 word length at 2.5-Gb/s bit rate during transmission over 75-km of standard single-mode fiber  相似文献   

13.
Murata  K. Sano  K. Sano  E. Sugitani  S. Enoki  T. 《Electronics letters》2001,37(20):1235-1237
A fully monolithic integrated 43 Gbit/s clock and data recovery circuit for optical fibre communication systems is described. The circuit is based on a phase-locked loop technique, and the input data signal is regenerated with the data-rate clock signal. The circuit was fabricated with 0.1 μm gate-length InAlAs/InGaAs/InP HEMTs, and error-free operation was confirmed for 231-1 PRBS data signal at 43 Gbit/s  相似文献   

14.
This paper presents a fully electrical 40-Gb/s time-division-multiplexing (TDM) system prototype transmitter and receiver. The input and output interface of the prototype are four-channel 10-Gb/s signals. The prototype can be mounted on a 300-mm-height rack and offers stable 40-Gb/s operation with a single power supply voltage. InP high-electron mobility transistor (HEMT) digital IC's perform 40-Gb/s multiplexing/demultiplexing and regeneration. In the receiver prototype, unitraveling-carrier photodiode (UTC-PD) generates 1 Vpp output and directly drives the InP HEMT decision circuit (DEC) without any need for an electronic amplifier. A clock recovery circuit recovers a 40-GHz clock with jitter of 220 fspp from a 40-Gb/s nonreturn-to-zero (NRZ) optical input. The tolerable dispersion range of the prototype within a 1-dB penalty from the receiver sensitivity at zero-dispersion is as wide as 95 ps/nm, and the clock phase margin is wider than 70° over almost all the tolerable dispersion range. A 100-km-long transmission experiment was performed using the prototype. A high receiver sensitivity [-25.1 dBm for NRZ (27-1) pseudorandom binary sequence (PRBS)] was obtained after the transmission. The 40-Gb/s regeneration of the InP DEC suppressed the deviation in sensitivity among output channels to only 0.3 dB. In addition, four-channel 40-Gb/s wavelength-division-multiplexing (WDM) transmission was successfully performed  相似文献   

15.
All-optical clock recovery (CR) from 10-Gb/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signal is demonstrated experimentally by introducing the chromatic-dispersion-induced clock tone into a free-running semiconductor optical amplifier (SOA)-based fiber ring laser for achieving mode-locking. Since no special component is required for NRZ-DPSK demodulation, our proposed method is very promising because of its simple configuration and better stability. The good performance of our proposed configuration is fulfilled with a 20-km standard single-mode fiber to regenerate clock tone of the NRZ-DPSK signal. The recovered clock signal with the extinction ratio of 17 dB and the root-mean-square timing jitter of 718 fs is achieved under 231-1 pseudorandom binary sequence NRZ-DPSK signals measurement  相似文献   

16.
In this investigation, a simple wavelength-tunable laser based on a Fabry–PÉrot laser diode (FP-LD) and an erbium-doped fiber amplifier to serve as a downlink signal in a colorless wavelength-division-multiplexed passive optical network (PON) is proposed and experimentally demonstrated. The tuning range of the proposed laser is between 1529.48 and 1560.72 nm, and the output performance of proposed laser is discussed. Colorless operation is implemented by using an FP-LD and a reflective semiconductor optical amplifier in each optical network unit for uplink signal remodulation, respectively. In addition, error-free data signal remodulation using 10-Gb/s downlink differential phase-shift keying and 2.5-Gb/s uplink on–off keying is achieved in a 25-km reach PON.   相似文献   

17.
We propose a novel scheme of Rayleigh backscattering noise-eliminated, long-reach, single-fiber, full-duplex, centralized wavelength-division multiplexed passive optical network with differential quadrature phase-shift keying (DPSK) downstream and remodulated upstream using an optical carrier-suppressed subcarrier-modulation (OCS-SCM) technique and optical interleaver. The error-free transmissions of 10-Gb/s downstream and 2.5-Gb/s upstream signals are experimentally demonstrated over 115-km single-fiber bidirectional SMF-28 with less than 0.5 and 1.9 dB power penalties, respectively.   相似文献   

18.
A mode-adapted semiconductor optical amplifier (SOA) has been fabricated and packaged. At the gain peak, 1500 nm, the fiber to fiber gain was measured to be 32.5 dB. Statistics for eight packaged devices indicate that a fiber-to-fiber gain of 26.3 dB ± 1.3 dB and a saturation output power of 12.4 dBm ± 0.4 dBm are typical at a bias of 500 mA for λ = 1550 nm. Polarization sensitivity at 1550 nm was measured to be 1.1 dB ± 0.4 dB and the transverse electric (TE) polarization state noise figure (NF) was determined to be 7.0 dB ± 0.5 dB. The coupling loss was 1.3 dB ± 0.1 dB per facet. This SOA, with a 1.3-nm filter, was used as an optical preamplifier in a 10-Gb/s return-to-zero (RZ) system testbed with a pseudorandom binary sequence (PRBS) of 231 -1. A 14.5-dB improvement in receiver sensitivity was observed at a bit error rate (BER) of 10-11  相似文献   

19.
5-Gb/s optical PSK (phase-shift keying) homodyne detection experiments are discussed. In these experiments, the optical carrier is recovered by a Costas optical phase-locked loop using a multielectrode local oscillator (DFB) laser diode at 1.55 μm with a flat FM response. Although the beat linewidth of 80 kHz is broad compared to the loops in other phase-locked loop (PLL) experiments, phase locking with Costas loop is confirmed at 5 Gb/s by increasing the loop natural frequency. The receiver sensitivity is -42.2 dBm or 93 photon/bit for a 27-1 pseudorandom bit sequence (PRBS) in front of a 90° hydride  相似文献   

20.
Robust wide-bandwidth fiber Bragg gratings have been produced for use as dispersion compensators that yield <0.3-dB power penalties due to distortion over an 80-km transmission fine of nonzero dispersion-shifted fiber in a 10-Gb/s nonreturn-to-zero optical communications system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号