首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

2.
采用不同浇注温度和压射比压进行了AZ80-0.5Ce镁合金机械外壳压铸,并进行了力学性能和显微组织的测试与分析。结果表明:当浇注温度从650℃提高到730℃、压射比压从40 MPa增大到70 MPa时,外壳力学性能先提高后下降。(与650℃浇注相比,690℃浇注时外壳的平均晶粒尺寸由14.9μm减小到10.0μm,减小了32.4%;抗拉强度和屈服强度分别由251、216 MPa增大到288、252 MPa,分别增大14.7%、16.7%。与压射比压40 MPa相比,压射比压为60 MPa时的外壳平均晶粒尺寸由13.8μm减小到10.0μm,减小27.5%;抗拉强度和屈服强度分别由253、218 MPa增大到288、252MPa,分别增大13.8%、15.6%)。AZ80-0.5Ce镁合金机械外壳压铸的浇注温度优选为690℃,压射比压优选为60 MPa。  相似文献   

3.
采用不同的比压和浇注温度进行了汽车轴承架用Zn-Al合金的液态模锻,并进行了耐磨损性能和显微组织的测试与分析。结果表明:随比压从25MPa增大至65 MPa,浇注温度从550℃升高至630℃,汽车轴承架用Zn-Al合金试样的组织改善程度先增大后减小,耐磨损性能先提高后下降。与25 MPa相比,比压45 MPa使试样的磨损体积和平均晶粒尺寸分别减小了41%和33%;与550℃相比,浇注温度610℃使试样的的磨损体积和平均晶粒尺寸分别减小了49%和40%。汽车轴承架用Zn-Al合金的液态模锻工艺参数比压和浇注温度分别优选为45 MPa和610℃。  相似文献   

4.
采用不同挤压比进行了AZ61-0.8Ti镁合金的挤压试验,并进行了显微组织、耐蚀性和热疲劳性能的测试与分析。结果表明:随挤压比从12增大到24,合金的平均晶粒尺寸先减小后增大,耐蚀性和热疲劳性能均先提高后下降。与挤压比12相比,挤压比22.4时合金的平均晶粒尺寸减小9μm,腐蚀电位正移157 m V,热疲劳裂纹平均长度和平均宽度分别减小21、17μm。AZ61-0.8Ti镁合金的挤压比优选为22.4。  相似文献   

5.
为改善和提高AZ81镁合金的组织和力学性能,采用不同的始锻温度对AZ81镁合金进行了锻压试验,并进行了组织和力学性能的测试与分析。结果表明:随始锻温度从400℃升高至480℃,试样的平均晶粒尺寸和断后伸长率先减小后增大,而抗拉强度和屈服强度先增大后减小,试样的显微组织和力学性能均先改善后变差。与400℃时锻造相比,始锻温度为440℃时锻造的AZ81镁合金的平均晶粒尺寸减小了9.4μm,晶粒细化,组织得到了极大地改善;抗拉强度和屈服强度分别增大了63和71 MPa,断后伸长率减小了3.9%。因此,AZ81镁合金的始锻温度优选为440℃。  相似文献   

6.
采用不同的挤压温度和挤压速度进行了车身用AZ80镁合金的挤压试验,进行了显微组织、织构和力学性能的测试与分析。结果表明:在试验条件下,AZ80镁合金的平均晶粒尺寸、织构最大值先增大后减小,力学性能先减小后增大。与320℃挤压相比,360℃挤压时镁合金平均晶粒尺寸减小39%,织构最大值减小41%,抗拉强度和屈服强度分别增大16%、21%。与1 m/min速度挤压相比,3.5 m/min速度挤压时镁合金平均晶粒尺寸减小37%,织构最大值减小23%,抗拉强度和屈服强度分别增大13%、18%。挤压温度优选为360℃、挤压速度优选为3.5 m/min。  相似文献   

7.
以AZ61镁合金为研究对象,添加K2TiF6与Mg发生原位自生反应生成Ti,采用OM、SEM观察和XRD物相分析以及拉伸性能测试等分析方法,研究了微量Ti对AZ61镁合金组织和性能的影响。研究发现,随着Ti含量的增加,AZ61合金晶粒尺寸先减小后增大,当Ti含量为1.5%时,细化效果最佳,铸态晶粒尺寸为41 μm。铸态和热处理态试样的抗拉强度和伸长率先增大后减小,最高抗拉强度分别达到201.5 MPa和223.5 MPa。  相似文献   

8.
为了改善铸态AZ80镁合金组织和性能,对均匀化处理的铸态AZ80镁合金进行了多向锻造试验,并采用金相分析、EBSD(电子背散射衍射)分析和拉伸试验等方法,进行了显微组织和力学性能的测试与分析.结果表明:与锻造前相比,多向锻造后的AZ80镁合金的平均晶粒尺寸减小了约76 μm、抗拉强度增加了66 MPa、屈服强度增加了7...  相似文献   

9.
对AZ80Ce镁合金试样进行了锻造,研究了锻造温度对试样显微组织和力学性能的影响。结果表明:随始锻温度增大,试样的平均晶粒尺寸和断后伸长率先减小后增大,强度先增大后减小。与370℃始锻温度相比,400℃始锻温度使试样的平均晶粒尺寸和断后伸长率分别减小了47%和16.2%,抗拉强度和屈服强度分别增大了8.9%和12.8%;与270℃终锻温度相比,290℃终锻温度使试样的平均晶粒尺寸和伸长率分别减小了40%和14.2%,抗拉强度和屈服强度分别增大了5.8%和9.9%。汽车车轮用AZ80Ce镁合金的始锻温度和终锻温度分别优选为400、290℃。  相似文献   

10.
采用三种不同方式对AZ61镁合金锻造温度进行了控制,测试和分析了锻件的力学性能、磨损性能和显微组织。结果表明,锻造温度的模糊PID控制有助于细化锻压态AZ61镁合金晶粒,提高合金的强度和磨损性能。与无PID控制相比,模糊PID控制获得的锻态AZ61镁合金抗拉强度增大24 MPa(从290 MPa增加到314 MPa),屈服强度增大26 MPa(从185 MPa增加到211 MPa),磨损体积减小22×10~(-3)mm~3(从42×10~(-3)mm~3减小到20×10~(-3)mm~3),平均晶粒尺寸减小9.3μm(从17.4μm减小到8.1μm)。  相似文献   

11.
采用不同的浇注温度和压射比压进行了汽车用新型AZ91-SrCe镁合金的压铸试验,并进行了显微组织和高温耐磨性的测试与分析。结果表明,在浇注温度670~710℃、压射比压30~70 MPa,随浇注温度和压射比压的提高,合金的平均晶粒尺寸和高温磨损体积先下降后提高,高温耐磨性先增加后减小。在浇注温度690℃和压射比压60MPa时,合金的平均晶粒尺寸最小(25μm),高温磨损体积最小(51×10~(-3)mm~3)。AZ91-SrCe镁合金压铸时,浇注温度和压射比压分别优选为690℃和60 MPa。  相似文献   

12.
对汽车用镁合金挤压过程进行了自适应PID控制前后的对比,并进行了显微组织和力学性能的测试与分析。结果表明:与自适应PID控制前相比,控制后的挤压态AZ80、AZ31镁合金试样平均晶粒尺寸减小,抗拉强度和屈服强度增大,断后伸长率略有减小,镁合金的显微组织和力学性能均得到了提高。  相似文献   

13.
分别采用常规熔炼铸造与基于PID控制和炉温补偿技术对AZ80镁合金熔炼铸造进行了试验,并进行了试样显微组织和室温力学性能的测试与分析。结果表明:与常规熔炼铸造相比,基于PID控制和炉温补偿的熔炼技术制备的AZ80镁合金平均晶粒尺寸减小14μm,具有更佳的力学性能,其中抗拉强度增大22 MPa,屈服强度增大24 MPa,断后伸长率基本保持不变。  相似文献   

14.
利用电子背散射衍射(EBSD)技术观察研究了不同状态条件下AZ80镁合金的微观组织,分析了不同状态条件下AZ80镁合金的微观组织演化.结果表明:按照铸态、均质化热处理态和塑性变形态顺序,试样平均晶粒尺寸逐渐减小,平均晶粒形状纵横比呈先增大后减小的变化趋势,网状β-Mg17Al12相逐渐消失,材料塑性和强度得到提高;晶界...  相似文献   

15.
采用不同的工艺参数进行了AZ91-0.5In镁合金电机盖试样的压铸试验,并进行了室温力学性能测试与分析。结果表明,随压射比压增大或压射速度增快,试样的抗拉强度和屈服强度均先增大后减小,而断后伸长率在7%~9%范围内先减小后增大。当压射比压90 MPa、压射速度5 m/s时,试样的抗拉强度和屈服强度达到峰值,分别为262、171 MPa。AZ91-0.5In镁合金压铸电机盖的压射比压优选90 MPa、压射速度优选5 m/s。  相似文献   

16.
采用不同的工艺参数对AZ80镁合金进行了挤锻复合成形,研究了挤压温度、锻压温度对合金显微组织和冲击性能的影响。试验结果表明:随挤压温度、锻压温度增加,AZ80镁合金的平均晶粒尺寸均先减小后增大,冲击韧度均先增大后减小。当挤压温度和锻压温度均为390℃时,AZ80镁合金的平均晶粒尺寸最小,晶粒得到显著细化,冲击韧度最大,韧性最佳,冲击性能最好。挤压温度和锻压温度的升高能够激活和协调镁合金的棱柱滑移系,减小变形的阻力,进而提升镁合金内部组织的塑性变形。挤锻复合成形有利于AZ80镁合金的塑性变形,晶粒的细化和均匀化分布使得裂纹难以产生,而且第二相的分布状态也使得裂纹难以蔓延,因此经挤压后的镁合金韧性较佳。当挤压温度或锻压温度继续上升至420℃后,镁合金内部的强化相晶粒反而增大,冲击韧度变小,冲击性能下降。  相似文献   

17.
采用不同的浇注温度和比压对ZA12-0.6Sr锌合金机械圆环试件进行了液态模锻试验,并进行了热疲劳性能和耐磨损性能的测试与分析。结果表明:随浇注温度和比压的增加,试样的主裂纹平均深度和磨损体积均先减小后增大,热疲劳性能和耐磨损性能均先提升后下降。与560℃浇注温度相比,600℃浇注温度下试样的主裂纹平均深度和磨损体积分别减小了38.1%、25%;与80 MPa比压相比,120 MPa下试样的主裂纹平均深度和磨损体积分别减小了31.58%、22.58%。ZA12-0.6Sr锌合金圆环的液态模锻工艺参数优选为:浇注温度600℃和比压120 MPa。  相似文献   

18.
以AZ91D镁合金铸坯为研究对象,分析了等温模锻前后铸坯微观组织的演变,采用粒径尺寸分析软件定量检测了初生相的平均晶粒长度.结果表明:经等温模锻后,基体相和第二相沿垂直压力方向被拉长,逐渐演变为纤维状.呈现出明显的流线特征;初生相的平均晶粒长度增大约80%,最大晶粒长度增大约90.3%.  相似文献   

19.
研究了不同轧制变形量对AZ80镁合金组织及性能的影响。结果表明,AZ80镁合金的抗拉强度随轧制变形量的增加有所提高,而伸长率则随着变形量的增加先增加后减小。变形量为25%、50%、80%的AZ80镁合金其屈服强度分别为200、146、205 MPa;抗拉强度分别为245.52、249.08、279.49 MPa;伸长率分别为15.8%、24.2%、19.1%;其晶粒平均尺寸分别为30、10、3μm。  相似文献   

20.
对电动机外壳用AZ80镁合金进行了常规锻压和-20℃低温多向锻压,并进行了显微组织观察与力学性能的分析。结果表明,与常规锻压相比,低温多向锻压AZ80镁合金晶粒明显细化,平均晶粒尺寸减小65.7%;低温多向锻压镁合金的力学性能得到明显提高,25℃屈服强度、抗拉强度和伸长率分别增加70.6%,72.5%,152.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号