首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximate level set method for three‐dimensional crack propagation is presented. In this method, the discontinuity surface in each cracked element is defined by element‐local level sets (ELLSs). The local level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with the adjacent element crack surfaces in a least‐square sense. A simple iterative procedure is introduced to improve the consistency of the generated element crack surface with those of the adjacent cracked elements. The discrete discontinuity is treated by the phantom node method which is a simplified version of the extended finite element method (XFEM). The ELLS method and the phantom node technology are combined for the solution of dynamic fracture problems. Numerical examples for three‐dimensional dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A method for dynamic crack and shear band propagation with phantom nodes   总被引:1,自引:0,他引:1  
A new method for modelling of arbitrary dynamic crack and shear band propagation is presented. We show that by a rearrangement of the extended finite element basis and the nodal degrees of freedom, the discontinuity can be described by superposed elements and phantom nodes. Cracks are treated by adding phantom nodes and superposing elements on the original mesh. Shear bands are treated by adding phantom degrees of freedom. The proposed method simplifies the treatment of element‐by‐element crack and shear band propagation in explicit methods. A quadrature method for 4‐node quadrilaterals is proposed based on a single quadrature point and hourglass control. The proposed method provides consistent history variables because it does not use a subdomain integration scheme for the discontinuous integrand. Numerical examples for dynamic crack and shear band propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is devoted to the extraction of the dynamic stress intensity factor (DSIF) for structures containing multiple discontinuities (cracks, voids and inclusions) by developing the extended finite element method (XFEM). In this method, four types of enrichment functions are used in the framework of the partition of unity to model interface discontinuity within the classical finite element method. In this procedure, elements that include a crack segment, the boundary of a void or the boundary of an inclusion are not required to conform to discontinuous edges. The DSIF is evaluated by the interaction integral. After the effectiveness of the implemented XFEM program is verified, the effects of voids, inclusions and other cracks on the DSIF of a stationary major crack are investigated by using XFEM. The results show that the dynamic effects have an influence on the path independence of the interaction integral, and these voids, inclusions and other cracks have a significant effect on the DSIF of the major crack.  相似文献   

5.
A new method for modeling discrete cracks based on the extended finite element method is described. In the method, the growth of the actual crack is tracked and approximated with contiguous discrete crack segments that lie on finite element nodes and span only two adjacent elements. The method can deal with complicated fracture patterns because it needs no explicit representation of the topology of the actual crack path. A set of effective rules for injection of crack segments is presented so that fracture behavior beginning from arbitrary crack nucleations to macroscopic crack propagation is seamlessly modeled. The effectiveness of the method is demonstrated with several dynamic fracture problems that involve complicated crack patterns such as fragmentation and crack branching. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is dedicated to simulation of dynamic analysis of fixed cracks in orthotropic media using an extended finite element method. This work is in fact an extension to dynamic problems of the recently developed orthotropic extended finite element method for fracture analysis of composites. In this method, the Heaviside and near-tip enrichment functions are used in the framework of the partition of unity for modeling crack discontinuity and crack-tip singularities within the classical finite element method. In this procedure, elements that include a crack are not required to conform to crack edges. Therefore, mesh generation can be performed without any need to comply to crack edges and the method is capable of modeling the crack propagation without any remeshing. To determine the fracture properties, mixed-mode dynamic stress intensity factors (DSIFs) are evaluated by means of domain separation integral (J-integral) method. Results of the proposed method are compared with other available analytical and computational results.  相似文献   

7.
The cohesive finite element method (CFEM) allows explicit modelling of fracture processes. One form of CFEM models integrates cohesive surfaces along all finite element boundaries, facilitating the explicit resolution of arbitrary fracture paths and fracture patterns. This framework also permits explicit account of arbitrary microstructures with multiple length scales, allowing the effects of material heterogeneity, phase morphology, phase size and phase distribution to be quantified. However, use of this form of CFEM with cohesive traction–separation laws with finite initial stiffness imposes two competing requirements on the finite element size. On one hand, an upper bound is needed to ensure that fields within crack‐tip cohesive zones are accurately described. On the other hand, a lower bound is also required to ensure that the discrete model closely approximates the physical problem at hand. Both issues are analysed in this paper within the context of fracture in multi‐phase composite microstructures and a variable stiffness bilinear cohesive model. The resulting criterion for solution convergence is given for meshes with uniform, cross‐triangle elements. A series of calculations is carried out to illustrate the issues discussed and to verify the criterion given. These simulations concern dynamic crack growth in an Al2O3 ceramic and in an Al2O3/TiB2 ceramic composite whose phases are modelled as being hyperelastic in constitutive behaviour. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
We present an incremental quasi‐static contact algorithm for path‐dependent frictional crack propagation in the framework of the extended finite element (FE) method. The discrete formulation allows for the modeling of frictional contact independent of the FE mesh. Standard Coulomb plasticity model is introduced to model the frictional contact on the surface of discontinuity. The contact constraint is borrowed from non‐linear contact mechanics and embedded within a localized element by penalty method. Newton–Raphson iteration with consistent linearization is used to advance the solution. We show the superior convergence performance of the proposed iterative method compared with a previously published algorithm called ‘LATIN’ for frictional crack propagation. Numerical examples include simulation of crack initiation and propagation in 2D plane strain with and without bulk plasticity. In the presence of bulk plasticity, the problem is also solved using an augmented Lagrangian procedure to demonstrate the efficacy and adequacy of the standard penalty solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A multiscale method is presented which couples a molecular dynamics approach for describing fracture at the crack tip with an extended finite element method for discretizing the remainder of the domain. After recalling the basic equations of molecular dynamics and continuum mechanics, the discretization is discussed for the continuum subdomain where the partition‐of‐unity property of finite element shape functions is used, since in this fashion the crack in the wake of its tip is naturally modelled as a traction‐free discontinuity. Next, the zonal coupling method between the atomistic and continuum models is recapitulated. Finally, it is discussed how the stress has been computed in the atomic subdomain, and a two‐dimensional computation is presented of dynamic fracture using the coupled model. The result shows multiple branching, which is reminiscent of recent results from simulations on dynamic fracture using cohesive‐zone models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the dual boundary element method in time domain is developed for three‐dimensional dynamic crack problems. The boundary integral equations for displacement and traction in time domain are presented. By using the displacement equation and traction equation on crack surfaces, the discontinuity displacement on the crack can be determined. The integral equations are solved numerically by a time‐stepping technique with quadratic boundary elements. The dynamic stress intensity factors are calculated from the crack opening displacement. Several examples are presented to demonstrate the accuracy of this method. Copyright © 1999 John Wiley & Sons, Ltd  相似文献   

11.
This paper presents an augmentation method that enables bilinear finite elements to efficiently and accurately account for arbitrary, multiple intra‐elemental discontinuities in 2D solids. The augmented finite element method (A‐FEM) employs four internal nodes to account for the crack displacements due to an intra‐elemental weak or strong discontinuity, and it permits repeated elemental augmentation to include multiple interactive cracks. It thus enables a unified treatment of damage evolution from a weak discontinuity to a strong discontinuity, and to multiple interactive cohesive cracks, all within a single bilinear element that employs standard external nodal DoFs only. A novel elemental condensation procedure has been developed to solve the internal nodal DoFs as functions of the external nodal DoFs for any irreversible, piece‐wise linear cohesive laws. It leads to a fully condensed elemental equilibrium equation with mathematical exactness, eliminating the need for nonlinear equilibrium iterations at elemental level. The new A‐FEM's high‐fidelity simulation capabilities to interactive cohesive crack formation and propagation in homogeneous, and heterogeneous solids have been demonstrated through several challenging numerical examples. It is shown that the proposed A‐FEM, empowered by the new elemental condensation procedure, is numerically very efficient, accurate, and robust. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
New methods for the analysis of failure by multiscale methods that invoke unit cells to obtain the subscale response are described. These methods, called multiscale aggregating discontinuities, are based on the concept of ‘perforated’ unit cells, which exclude subdomains that are unstable, i.e. exhibit loss of material stability. Using this concept, it is possible to compute an equivalent discontinuity at the coarser scale, including both the direction of the discontinuity and the magnitude of the jump. These variables are then passed to the coarse‐scale model along with the stress in the unit cell. The discontinuity is injected at the coarser scale by the extended finite element method. Analysis of the procedure shows that the method is consistent in power and yields a bulk stress–strain response that is stable. Applications of this procedure to crack growth in heterogeneous materials are given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐order generalized finite element method (GFEM) for non‐planar three‐dimensional crack surfaces is presented. Discontinuous p‐hierarchical enrichment functions are applied to strongly graded tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack arbitrarily located within a finite element (FE) mesh and thus the proposed method allows fully automated fracture analysis using an existing FE discretization without cracks. We also propose a crack surface representation that is independent of the underlying GFEM discretization and controlled only by the physics of the problem. The representation preserves continuity of the crack surface while being able to represent non‐planar, non‐smooth, crack surfaces inside of elements of any size. The proposed representation also provides support for the implementation of accurate, robust, and computationally efficient numerical integration of the weak form over elements cut by the crack surface. Numerical simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors along non‐planar curved crack fronts and the robustness of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A method for coarse graining of microcrack growth to the macroscale through the multiscale aggregating discontinuity (MAD) method is further developed. Three new features are: (1) methods for treating nucleating cracks, (2) the linking of the micro unit cell with the macroelement by the hourglass mode, and (3) methods for recovering macrocracks with variable crack opening. Unlike in the original MAD method, ellipticity is not retained at the macroscale in the bulk material, but we show that the element stiffness of the bulk material is positive definite. Several examples with comparisons with direct numerical simulations are given to demonstrate the effectiveness of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A recent approach to fracture modeling has combined the extended finite element method (XFEM) with cohesive zone models. Most studies have used simplified enrichment functions to represent the strong discontinuity but have lacked an analytical basis to represent the displacement gradients in the vicinity of the cohesive crack. In this study enrichment functions based upon an existing analytical investigation of the cohesive crack problem are proposed. These functions have the potential of representing displacement gradients in the vicinity of the cohesive crack and allow the crack to incrementally advance across each element. Key aspects of the corresponding numerical formulation and enrichment functions are discussed. A parameter study for a simple mode I model problem is presented to evaluate if quasi‐static crack propagation can be accurately followed with the proposed formulation. The effects of mesh refinement and mesh orientation are considered. Propagation of the cohesive zone tip and crack tip, time variation of the cohesive zone length, and crack profiles are examined. The analysis results indicate that the analytically based enrichment functions can accurately track the cohesive crack propagation of a mode I crack independent of mesh orientation. A mixed mode example further demonstrates the potential of the formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The recently emerged idea of enriching standard finite element interpolations by strain or displacement discontinuities has triggered the development of powerful techniques that allow efficient modelling of regions with highly localized strains, e.g. of fracture zones in concrete, or shear bands in metals or soils. The present paper describes a triangular element with an embedded displacement discontinuity that represents a crack. The constitutive model is formulated within the framework of damage theory, with crack closure effects and friction on the crack faces taken into account. Numerical aspects of the implementation are discussed. In a companion paper, the embedded crack approach is combined with the more traditional smeared crack approach. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Crack nucleation in thermal-barrier coating (TBC) systems subjected to a monotonic cooling process is studied. The TBC system is modeled using the finite element method, where cracks are represented as discrete discontinuities across continuum elements using the partition-of-unity method. The numerical implementation used for crack nucleation is based on an algorithm where, at insertion of a discontinuity, the traction response is derived from a cohesive zone model that has been modified to (i) behave like an initially rigid cohesive model, and to (ii) ensure smoothness of the traction-separation law at zero crack opening. Accordingly, an adequate convergence behavior of the numerical formulation can be warranted in boundary value problems of systems with relatively complex geometries. In the present numerical study, a comparison is made between TBC systems composed of different constitutive models. The fracture patterns and evolutions of the overall crack growth resulting from the simulations clearly illustrate the importance of accounting for the effects of plasticity in the bond coating and anisotropy in the top coating. The computed fracture profile is in good correspondence with experimental observations reported in the literature.  相似文献   

19.
As an alternative to the smeared and discrete crack representations, an embedded representation of fracture for finite element analysis of concrete structures is presented. The three-field Hu–Washizu variational statement is extended to bodies with internal discontinuities. The extended variational statement is then utilized for formulating elements with a discontinuous displacement field. The new elements are capable of modelling different deformation modes of an internal discontinuity at the element level. The satisfactory performance of the embedded crack representation is verified by several case studies on concrete fracture.  相似文献   

20.
The discrete crack mechanics (DCM) method is a dislocation-based crack modeling technique where cracks are constructed using Volterra dislocation loops. The method allows for the natural introduction of displacement discontinuities, avoiding numerically expensive techniques. Mesh dependence in existing computational modeling of crack growth is eliminated by utilizing a superposition procedure. The elastic field of cracks in finite bodies is separated into two parts: the infinite-medium solution of discrete dislocations and an finite element method solution of a correction problem that satisfies external boundary conditions. In the DCM, a crack is represented by a dislocation array with a fixed outer loop determining the crack tip position encompassing additional concentric loops free to expand or contract. Solving for the equilibrium positions of the inner loops gives the crack shape and stress field. The equation of motion governing the crack tip is developed for quasi-static growth problems. Convergence and accuracy of the DCM method are verified with two- and three-dimensional problems with well-known solutions. Crack growth is simulated under load and displacement (rotation) control. In the latter case, a semicircular surface crack in a bent prismatic beam is shown to change shape as it propagates inward, stopping as the imposed rotation is accommodated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号