首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods implemented in a three‐dimensional finite element code for the simulation of gas assisted injection molding are described, and predictions compared with the results of molding trials. The emphasis is on prediction of primary gas penetration and plastic wall thickness, including the effects of cooling during a delay before gas injection. For the latter, time dependent heat transfer coefficients at the cavity surface are used, determined in a separate analysis of transient heat conduction through the plastic and the mold tool to the circulating coolant. This shows how the initial value of 25,000 W/m2K falls by about an order of magnitude during the first few seconds of cooling, and also how values vary from cycle to cycle as steady periodic conditions are approached. For a tubular handle molded in polystyrene, with melt flow modeled by a Cross WLF model, comparisons of simulations with sectioned parts show excellent prediction of wall thickness and its variation circumferentially and in bends. The increase in wall thickness due to cooling during a gas delay is accurately modeled, as is the occurrence of a blow out. POLYM. ENG. SCI. 45:1049–1058, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
This article proposes a generalized Newtonian model to predict the three‐dimensional gas penetration phenomenon in the GAIM process, where the gas and melt compressibility are both taken into account and hence the primary and secondary penetrations in GAIM processes are able to be quantitatively predicted. Additionally, an incompressible model requiring no outflow boundary is also presented to emphasis the influence of gas compressibility on the primary penetration. Based on a finite volume discretization, the proposed numerical model solves the complete momentum equation with two front transport equations, which are employed to track the gas/melt and air/melt interfaces. The modified Cross‐WLF model is adopted to describe the melt rheological behavior. The two‐domain modified Tait equation is exploited to represent the melt compressibility, while a polytropic model is employed to express the gas compressibility. The proposed schemes are quantitatively validated by the gas penetration characteristics in a clip‐shaped square tube, where good prediction accuracy is obtained. The influences of five major molding parameters, such as the injection pressure, mold temperature, melt temperature, delay time, and melt material on the gas penetration characteristics in the same clip‐shaped square tube via the proposed numerical approach are extensively presented and discussed. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
Gas‐assisted injection molding can effectively produce parts free of sink marks in thick sections and free of warpage in long plates. This article concerns the numerical simulation of melt flow and gas penetration during the filling stage in gas‐assisted injection molding. By taking the influence of gas penetration on the melt flow as boundary conditions of the melt‐filling region, a hybrid finite‐element/finite‐difference method similar to conventional‐injection molding simulation was used in the gas‐assisted injection molding‐filling simulation. For gas penetration within the gas channel, an analytical formulation of the gas‐penetration thickness ratio was deduced based on the matching asymptotic expansion method. Finally, an experiment was employed to verify this proposed simulation scheme and gas‐penetration model, by comparing the results of the experiment with the simulation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2377–2384, 2003  相似文献   

4.
5.
The residual thicknesses of the skin and the inner layers are important quality indicators of water‐assisted co‐injection molding (WACIM) process or overflow WACIM (O‐WACIM) parts. At the curved section, the residual thicknesses change significantly. A numerical simulation program based on the computational fluid dynamics method was developed to simulate the O‐WACIM process. After the numerical simulation program was validated with the experimental results, it was used to study the effects of the bending radii and bending angles on the residual thicknesses of the skin and inner layers of O‐WACIM parts. The results showed that the penetration of the inner melt and water was always close to the inner concave side due to the higher local pressure gradient and temperature. The effects of processing parameters on the residual thicknesses of the skin and inner layers were investigated using the orthogonal simulation method. It was found that the residual thicknesses of the skin/inner layer at the inner concave/outer convex side are mainly influenced by different parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42468.  相似文献   

6.
To gain a better understanding of the gas‐assisted injection molding process, we have developed a computational model for the gas assisted injection molding (GAIM) process. This model has been set up to deal with (non‐isothermal) three‐dimensional flow, in order to correctly predict the gas distribution in GAIM products. It employs a pseudo‐concentration method, in which the governing equations are solved on a fixed grid that covers the entire mold. Both the air downstream of the polymer front and the gas are represented by a fictitious fluid that does not contributeto the pressure drop in the mold. The model has been validated against both isothermal and non‐isothermal gas injected experiments. In contrast to other models that have been reported in the literature, our model yields the gas penetration from the actual process physics (not from a presupposed gas distribution). Consequently, it is able to deal with the 3‐D character of the process, as well as with primary (end of gas filling) and secondary (end of packing) gas penetration, including temperature effects and generalized Newtonian viscosity behavior.  相似文献   

7.
This article presents the development, verification, and validation of three‐dimensional (3‐D) numerical simulation for injection molding filling of 3‐D parts and parts with microsurface features. For purpose of verification and comparison, two numerical models, the mixed model and the equal‐order model, were used to solve the Stokes equations with three different tetrahedral elements (Taylor‐Hood, MINI, and equal‐order). The control volume scheme with tetrahedral finite element mesh was used for tracking advancing melt fronts and the operator splitting method was selected to solve the energy equation. A new, simple memory management procedure was introduced to deal with the large sparse matrix system without using a huge amount of storage space. The numerical simulation was validated for mold filling of a 3‐D optical lens. The numerical simulation agreed very well with the experimental results and was useful in suggesting a better processing condition. As a new application area, a two‐step macro–micro filling approach was adopted for the filling analysis of a part with a micro‐surface feature to handle both macro and micro dimensions while avoiding an excessive number of elements. POLYM. ENG. SCI., 46:1263–1274, 2006. © 2006 Society of Plastics Engineers  相似文献   

8.
Applying gas pressure on the reverse side of the part that called external gas‐assisted injection molding (EGAIM) has the potential to solve shrinkage‐related molding problems. We investigate the packing effects of EGAIM on part shrinkage and sink mark under various rib design and compare it to that of conventional injection molding (CIM). It was found that EGAIM has uniformly distributed packing pressure within the entire mold cavity. To achieve equivalent part shrinkage, CIM requires 100 MPa packing pressure from the molding machine, whereas EGAIM requires only 9 MPa. EGAIM can further reduce part shrinkage if the gas pressure and gas packing time are both increased. EGAIM can also eliminate sink marks for rib designs of an aspect ratio (rib width /part thickness) up to 1.2, whereas CIM can achieve the same sink mark level only at an aspect ratio of less than 0.5. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
Simulation and experimental studies have been carried out on the transient gas‐liquid interface development and gas penetration behavior during the cavity filling and gas packing stage in the gas‐assisted injection molding of a spiral tube cavity. The evolution of the gas/melt interface and the distribution of the residual wall thickness of skin melt along with the advancement of gas/melt front were investigated. Numerical simulations were implemented on a fixed mesh covering the entire cavity. The residual thickness of a polymer layer and the length of gas penetration in the moldings were calculated using both the simulation and model developed in Part I of this study and commercial software (C‐Mold). Extensive molding experiments were performed on polystyrene at different processing conditions. The obtained results on the gas bubble dynamics and penetration behaviors were compared with those predicted by the present simulation and C‐Mold, indicating the good predictive capability of the proposed model. Polym. Eng. Sci. 44:992–1002, 2004. © 2004 Society of Plastics Engineers.  相似文献   

10.
A theoretical study has been carried out on the transient gas‐liquid interface development and gas penetration behavior during the cavity filling and gas packing stage in the gas‐assisted injection molding (GAIM) of a tube cavity. A mathematical formulation describing the evolution of the gas/melt interface and the distribution of the residual wall thickness of skin melt along with the advancement of gas/melt front is presented. The physical model is put forward on the basis of Hele‐Shaw approximation and interface kinematics and dynamics. Numerical simulation is implemented on a fixed mesh covering the entire cavity. The model and simulation can deal with both primary and secondary gas penetrations. The predicted and measuredresults are compared in Part II of this study to validate the theoretical model. Polym. Eng. Sci. 44:983–991, 2004. © 2004 Society of Plastics Engineers.  相似文献   

11.
Injection‐compression molding (ICM) process, combining conventional injection molding (CIM) process with compression molding, has been widely used in the manufacturing of optical media and optical lenses. Most of previous numerical studies regarding ICM process employ the Hele‐Shaw approximation, which is appropriate for thin cavity geometry only. This work presents a three‐dimensional numerical analysis system using a stabilized finite element method (FEM) and an arbitrary Lagrangian‐Eulerian (ALE) method for more rigorous modeling and simulation of ICM process of three‐dimensional geometry. The developed system is verified by comparing the results with existing experimental data as well as simulation data obtained from commercial software. Then, the system is adopted for simulations of ICM process of an optical lens, which is a practical example of three‐dimensional geometry. According to the simulation results, three‐dimensional flow characteristics are found to be significant especially during compression stage because of the squeezing nature of the flow. The results are then compared with those of CIM process, showing that ICM process results in reduced and more uniform distributions of the generalized shear rate and shear stress of the final part. Basic parametric studies are also carried out to understand effects of processing conditions, such as compression velocity and compression gap. POLYM. ENG. SCI.,2011. © 2011 Society of Plastics Engineers  相似文献   

12.
This study presents the development of dynamic models for gas injection pressure that may be implemented in the design of control systems for gas‐injection units. A nonlinear dynamic model was first derived and then verified by experimental measurements. This was done by using a laboratory‐built, gas‐assisted injection unit. The agreement between the prediction and measurement indicates that the present nonlinear dynamic model adequately predicts the dynamic behavior of gas injection pressure during the process. Although the resulting model is useful for understanding the behavior of the process and the effects of different process variables, its complexity may cause difficulties in a real control application. Therefore, a second‐order model based on the basic characteristics of the nonlinear model was proposed to approximate the gas injection pressure. In order to determine the model parameters, the algorithm of recursive least‐square system identification was employed. A comparison of simulated results of an identified model with experimental data showed that the model accurately predicted the transient behavior of gas injection pressure. Consequently, this low‐order model can be easily implemented into the control system design of a gas‐injection unit.  相似文献   

13.
The dependence of hierarchy in crystalline structures and molecular orientations of high density polyethylene parts with different molecular weights molded by gas‐assisted injection molding (GAIM) was intensively examined by scanning electron microscopy, two‐dimensional wide‐angle X‐ray scattering as well as dynamic rheological measurements. The non‐isothermal crystallization kinetics of the samples were also analyzed with a differential scanning calorimeter at various scanning rates. It was found that oriented lamellar structure, shish‐kebab and common spherulites were formed in different regions of the GAIM samples. The scanning electron microscope observations were consistent with the two‐dimensional wide‐angle X‐ray scattering results and showed that the molecular chains near the mold wall had strong orientation behavior, revealing the distribution of the shear rate of the GAIM process. The differences in crystal morphologies can be attributed to molecular weight differences as well as their responses to the external fields during the GAIM process. The formation mechanism of the shish‐kebab structure under the flow field of GAIM was also explored. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
We tried to predict the multilayer parison shape at pinch‐off stage in extrusion blow molding by nonisothermal and purely viscous non‐Newtonian flow simulation using the finite element method (FEM). We assumed the parison deformation as a flow problem. The Carreau model was used as the constitutive equation and FEM was used for calculation method. Multilayer parison used in this simulation was composed of high‐density polyethylene (HDPE) as inner and outer layers and low‐density polyethylene (LDPE) of which viscosity is five times lower than HDPE as a middle layer. We discussed multilayer parison shape in pinch‐off region. The results obtained are as follows; the parison shape of each layer was clearly visible in the pinch‐off during the mold closing. In addition, the distribution of parison thickness ratios for each layer was located for a large deformation near the pinch‐off region. The melt viscosity for each layer has an influence on the melt flow in the pinch‐off region. In a comparison with an experimental data of parison thickness ratios, the simulation results are larger than the experimental data. These simulation results obtained are in good agreement with the experimental data in consideration of the standard deviations. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

15.
Residual wall thickness is an important indicator which aims at measuring the quality of water‐assisted injection molding (WAIM) parts. The changes of residual wall thickness around dimensional transitions and curved sections are particularly significant. Free interface of the water/melt two‐phase was tracked by volume of fluid (VOF) method. Computational fluid dynamics (CFD) method was used to simulate the residual wall thickness, and the results corresponded with that of experiments. The results showed that the penetration of water at the long straight sections was steady, and the distribution of the residual wall thickness was uniform. However, there was melt accumulation phenomenon at the dimensional transitions, and the distribution of the residual wall thickness wasn't uniform. Adding fillet at the dimensional transitions could improve the uniformity of the residual wall thickness distribution, and effectively reduce water fingering. Additionally, at the curved sections, the residual wall thickness of the outer wall was always greater than that of the inner wall, and the fluctuations of the residual wall thickness difference were small. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Gas‐assisted injection molding (GAIM) is an innovative plastic processing technology, which was developed from the conventional injection molding, and has currently found wide industrial applications. About 70% of the whole gas‐assisted injection molding cycle is actually occupied by the cooling stage. The quality and production efficiency of molded parts are considerably affected by the cooling stage. Hence, it is necessary to study the solidification behaviors during the cooling stage. In this work, a simple experimental method was designed to simulate the solidification behaviors of high‐density polyethylene during cooling stage of GAIM. The enthalpy transformation approach, coupled with the control‐volume/finite difference techniques, was adopted to deal with the transient heat transfer problems with phase change effects. In situ measurements of the temperature decreases in the cavity were also carried out. Reasonable agreements between the experimental values and the simulated results such as cooling time, cooling rates, and temperature curves were obtained, which proved that this simple experimental method was effective. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The purpose of the work was to estimate an influence of gas‐assisted injection conditions (the temperature of plastic material, switch time‐delay time, gas injection time) of shape, position and dimension of gas channel, and structure of injection molded parts. The change in the value of the dynamic Young modulus and the mechanical loss tangent in function of temperature and oscillation frequency by the dynamic mechanical thermal analysis (DMTA) method was determined. It was found that injection molding parameters: injection molding temperature, switching time and gas injection time influenced significantly mass, wall thickness, and thermomechanical properties of parts. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
A finite element simulation of moving boundaries in a three‐dimensional inertiafree, incompressible flow is presented. A control volume scheme with a fixed finite element mesh is employed to predict fluid front advancement. Fluid front advancement and pressure variation in a flow domain similar to the mold cavity used for microchip encapsulation are predicted. The predicted fluid front advancement and pressure variation are in good agreement with the corresponding experimental results. As the difference in the thicknesses of mold cavities above and below the microchip is changed, the weld line location and pressure variation during mold filling are found to change significantly.  相似文献   

19.
Co‐injection molding, also known as sandwich molding, is a process in which two or more polymers are laminated together in a mold cavity. Integrated ultrasonic sensors embedded into a mold insert of a co‐injection‐molding machine have been used for real‐time, nonintrusive, and nondestructive diagnosis of co‐injection‐molding processes. Diagnosis of core arrival, core flow speed, part solidification, part detachment from the mold, thickness of skin and core, and core length at the mold was demonstrated. It is found that core flow speed and peak cavity pressure monotonically increased and decreased with the core volume percentage, respectively. Thicknesses of the skin and core of the molded part were estimated using the presented ultrasonic technique during molding with an accuracy better than ±17%. In addition, the core length had correlation with core thickness, core flow speed, and peak cavity pressure. Among them, the core thickness measured by the ultrasonic technique had the better correlation. This technique enables process optimization, the maximum process efficiency, and in‐process quality assurance of the molded parts. POLYM. ENG. SCI., 47:1491–1500, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
The influence of the processing variables on the birefringence and polymer/gas interface distribution is analyzed for polystyrene moldings obtained by gas‐assisted injection molding (GAIM) under various processing conditions. The processing variables studied were: melt and mold temperatures, shot size, gas pressure, injection speed, and gas‐delay time. Measurements and viscoelastic simulations of the radial distribution of birefringence components, Δn and nrr ? nθθ, the variation of the average birefringence, 〈nzz ? nθθ〉, along the molding and polymer/gas interface along the length of spiral‐shaped tubular moldings are presented. The polymer/gas interface distribution and flow stresses were simulated using a numerical scheme based on a hybrid finite element/finite difference/control volume method. The birefringence was calculated from the flow‐induced stresses using the stress‐optical rule. Simulations qualitatively agreed with measurements and correctly described theeffect of the processing variables on the birefringence andthe polymer/gas interface distribution in GAIM moldings. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号