首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean dilatation method effectively involves bi‐linear displacements and a constant pressure and is often known as the Q1‐P0 formulation. Its non‐linear implementation was originally derived as a three‐field formulation which included the volume ratio via the Jacobian, J, of the deformation gradient as an additional separate variable. However, the latter term was not directly required in the numerical implementation once J was assumed constant along with the pressure. This formulation will here be termed the non‐linear Q1‐P0 method. It is known to give good solutions for many practical large‐strain elasto‐plastic problems. However, for some problems, it has been shown to be prone to severe ‘hour‐glassing’. With a view to remedying this situation, we here re‐visit the three‐field formulation and derive a modified form, which although variationally valid, is over‐stiff in comparison to the original procedure (here simply called the Q1‐P0 method). However, the concepts lead to a natural method for stabilising the Q1‐P0 technique. The associated tangent stiffness matrix is symmetric. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
In general, internal cells are required to solve elasticity problems by involving a gravitational load in non‐homogeneous bodies with variable mass density when using a conventional boundary element method (BEM). Then, the effect of mesh reduction is not achieved and one of the main merits of the BEM, which is the simplicity of data preparation, is lost. In this study, it is shown that the domain cells can be avoided by using the triple‐reciprocity BEM formulation, where the density of domain integral is expressed in terms of other fields that are represented by boundary densities and/or source densities at isolated interior points. Utilizing the rotational symmetry, the triple‐reciprocity BEM formulation is developed for axially symmetric elasticity problems in non‐homogeneous bodies under gravitational force. A new computer program was developed and applied to solve several test problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines the efficient integration of a Symmetric Galerkin Boundary Element Analysis (SGBEA) method with multi‐zone resulting in a fully symmetric Galerkin multi‐zone formulation. In a previous approach, a Galerkin multi‐zone method was developed where the interfacial nodes are assigned degrees of freedom globally so that the displacement and traction continuity across the zonal interfaces are addressed directly. However, the method was only block symmetric. In the present paper, two new approaches are derived. In the first approach, the degrees of freedom for a particular zone are assigned locally, independent of the other zones. The usual linear set of equations, from the symmetric Galerkin approach, are augmented with an additional set of equations generated by the Galerkin form of hypersingular boundary integrals along the interfaces. Zonal continuity is imposed externally through Lagrange's constraints. This approach is also only block symmetric. The second approach derived from the first, uses the continuity constraints at the zonal assembly level to achieve full symmetry. These methods are compared to collocation multi‐zone and an earlier formulation, on two elasticity problems from the literature. It was found that the second method is much faster than the collocation method for medium to large scale problems, primarily due to its complete symmetry. It is also observed that these methods spend marginally more time on integration than the previous Galerkin multi‐zone method but are better suited to parallel processing. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A new finite element scheme is proposed for the numerical solution of time‐harmonic wave scattering problems in unbounded domains. The infinite domain in truncated via an artificial boundary ?? which encloses a finite computational domain Ω. On ?? a local high‐order non‐reflecting boundary condition (NRBC) is applied which is constructed to be optimal in a certain sense. This NRBC is implemented in a special way, by using auxiliary variables along the boundary ??, so that it involves no high‐order derivatives regardless of its order. The order of the scheme is simply an input parameter, and it may be arbitrarily high. This leads to a symmetric finite element formulation where standard C0 finite elements are used in Ω. The performance of the method is demonstrated via numerical examples, and it is compared to other NRBC‐based schemes. The method is shown to be highly accurate and stable, and to lead to a well‐conditioned matrix problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
When the different parts of a structure are modelled independently by BEM or FEM methods, it is sometimes necessary to put the parts together without remeshing of the nodes along the part interfaces. Frequently the nodes do not match along the interface. In this work, the symmetric Galerkin multi‐zone curved boundary element is a fully symmetric formulation and is the method used for the boundary element part. For BEM–FEM coupling it is then necessary to interpolate the tractions in‐between the non‐matching nodes for the FEM part. Finally, the coupling is achieved by transforming the finite element domains to equivalent boundary element domains in a block symmetric formulation. This system is then coupled with a boundary element domain with non‐matching nodes in‐between. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A new curved quadrilateral composite shell element using vectorial rotational variables is presented. An advanced co‐rotational framework defined by the two vectors generated by the four corner nodes is employed to extract pure element deformation from large displacement/rotation problems, and thus an element‐independent formulation is obtained. The present line of formulation differs from other co‐rotational formulations in that (i) all nodal variables are additive in an incremental solution procedure, (ii) the resulting element tangent stiffness is symmetric, and (iii) is updated using the total values of the nodal variables, making solving dynamic problems highly efficient. To overcome locking problems, uniformly reduced integration is used to compute the internal force vector and the element tangent stiffness matrix. A stabilized assumed strain procedure is employed to avoid spurious zero‐energy modes. Several examples involving composite plates and shells with large displacements and large rotations are presented to testify to the reliability, computational efficiency, and accuracy of the present formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We are concerned with the numerical simulation of wave motion in arbitrarily heterogeneous, elastic, perfectly‐matched‐layer‐(PML)‐truncated media. We extend in three dimensions a recently developed two‐dimensional formulation, by treating the PML via an unsplit‐field, but mixed‐field, displacement‐stress formulation, which is then coupled to a standard displacement‐only formulation for the interior domain, thus leading to a computationally cost‐efficient hybrid scheme. The hybrid treatment leads to, at most, third‐order in time semi‐discrete forms. The formulation is flexible enough to accommodate the standard PML, as well as the multi‐axial PML. We discuss several time‐marching schemes, which can be used à la carte, depending on the application: (a) an extended Newmark scheme for third‐order in time, either unsymmetric or fully symmetric semi‐discrete forms; (b) a standard implicit Newmark for the second‐order, unsymmetric semi‐discrete forms; and (c) an explicit Runge–Kutta scheme for a first‐order in time unsymmetric system. The latter is well‐suited for large‐scale problems on parallel architectures, while the second‐order treatment is particularly attractive for ready incorporation in existing codes written originally for finite domains. We compare the schemes and report numerical results demonstrating stability and efficacy of the proposed formulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A new finite element (FE) scheme is proposed for the solution of time‐dependent semi‐infinite wave‐guide problems, in dispersive or non‐dispersive media. The semi‐infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC), based on the Higdon non‐reflecting operators, is developed and applied on ??. The new NRBC does not involve any high derivatives beyond second order, but its order of accuracy is as high as one desires. It involves some parameters which are chosen automatically as a pre‐process. A C0 semi‐discrete FE formulation incorporating this NRBC is constructed for the problem in the finite domain bounded by ??. Augmented and split versions of this FE formulation are proposed. The semi‐discrete system of equations is solved by the Newmark time‐integration scheme. Numerical examples concerning dispersive waves in a semi‐infinite wave guide are used to demonstrate the performance of the new method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A new triangular thin‐shell finite element formulation is presented, which employs only translational degrees of freedom. The formulation allows for large deformations, and it is based on the nonlinear Kirchhoff thin‐shell theory. A number of static and dynamic test problems are considered for which analytical or benchmark solutions exist. Comparisons between the predictions of the new model and these solutions show that the new model accurately reproduces complex nonlinear analytical solutions as well as solutions obtained using existing, more complex finite element formulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A stabilized global–local quasi‐static contact algorithm for 3D non‐planar frictional crack is presented in the X‐FEM/level set framework. A three‐field weak formulation is considered and allows an independent discretization of the bulk and the crack interface. Then, a fine discretization of the interface can be defined according to the possible complex contact state along the crack faces independently from the mesh in the bulk. Furthermore, an efficient stabilized non‐linear LATIN solver dedicated to contact and friction is proposed. It allows solving in a unified framework frictionless and frictional contact at the crack interface with a symmetric formulation, no iterations on the local stage (unilateral contact law with/without friction), no calculation of any global tangent operator, and improved convergence rate. 2D and 3D patch tests are presented to illustrate the relevance of the proposed model and an actual 3D frictional crack problem under cyclic fretting loading is modeled. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The purpose of the present work is to model and to simulate the coupling between the electric and mechanical fields. A new finite element approach is proposed to model strong electro‐mechanical coupling in micro‐structures with capacitive effect. The proposed approach is based on a monolithic formulation: the electric and the mechanical fields are solved simultaneously in the same formulation. This method provides a tangent stiffness matrix for the total coupled problem which allows to determine accurately the pull‐in voltage and the natural frequency of electro‐mechanical systems such as MEMs. To illustrate the methodology results are shown for the analysis of a micro‐bridge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The paper presents a spatial Timoshenko beam element with a total Lagrangian formulation. The element is based on curvature interpolation that is independent of the rigid‐body motion of the beam element and simplifies the formulation. The section response is derived from plane section kinematics. A two‐node beam element with constant curvature is relatively simple to formulate and exhibits excellent numerical convergence. The formulation is extended to N‐node elements with polynomial curvature interpolation. Models with moderate discretization yield results of sufficient accuracy with a small number of iterations at each load step. Generalized second‐order stress resultants are identified and the section response takes into account non‐linear material behaviour. Green–Lagrange strains are expressed in terms of section curvature and shear distortion, whose first and second variations are functions of node displacements and rotations. A symmetric tangent stiffness matrix is derived by consistent linearization and an iterative acceleration method is used to improve numerical convergence for hyperelastic materials. The comparison of analytical results with numerical simulations in the literature demonstrates the consistency, accuracy and superior numerical performance of the proposed element. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a bubble‐enhanced smoothed finite element formulation for the analysis of volume‐constrained problems in two‐dimensional linear elasticity. The new formulation is derived based on the variational multi‐scale approach in which unequal order displacement‐pressure pairs are used for the mixed finite element approximation and hierarchical bubble function is selected for the fine‐scale displacement approximation. An area‐weighted averaging scheme is employed for the two‐scale smoothed strain calculation under the framework of edge‐based smoothed FEM. The smoothed fine‐scale solution is shown to naturally contain the stress field jump of the smoothed coarse‐scale solution across the boundary of edge‐based smoothing domain and thus provides the possibility to stabilize the global solution for volume‐constrained problems. A global monolithic solution strategy is employed, and the fine‐scale solution is solved without the consideration of approximating the strong form of the fine‐scale equation. Several numerical examples are analyzed to demonstrate the accuracy of the present formulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A three‐dimensional contact algorithm based on the pre‐discretization penalty method is presented. Using the pre‐discretization formulation gives rise to contact searching performed at the surface Gaussian integration points. It is shown that the proposed method is consistent with the continuum formulation of the problem and allows an easy incorporation of higher‐order elements with midside nodes to the analysis. Moreover, a symmetric treatment of mutually contacting surfaces is preserved even under large displacement increments. The proposed algorithm utilizes the BFGS method modified for constrained non‐linear systems. The effectiveness of quadratic isoparametric elements in contact analysis is tested in terms of numerical examples verified by analytical solutions and experimental measurements. The symmetry of the algorithm is clearly manifested in the problem of impact of two elastic cylinders. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Some theoretical problems and implementation problems are studied here for the semi‐conjugate direction method established by Yuan, Golub, Plemmons and Cecilio (2002). The existence of semi‐conjugate directions is proved for almost all matrices except skew‐symmetric matrices. A new technique is proposed to overcome the breakdown problem appeared in the semi‐conjugate direction method. In the implementation of the semi‐conjugate direction method, the generation of the semi‐conjugate direction is very important and necessary, but very expensive. The technique of limited‐memory is introduced to economize the cost of the generation of the semi‐conjugate direction in the Yuan–Golub– Plemmons–Cecilio algorithm. Finally, some numerical experiments are given to confirm our theoretical results. Our results illustrate that the semi‐conjugate direction method is very nice alternative for solving non‐symmetric systems, and the limited‐memory left conjugate direction method is a good improvement of the left conjugate direction method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A new meshfree method for the analysis of elasto‐plastic deformation is presented. The method is based on the proposed first‐order least‐squares formulation for elasto‐plasticity and the moving least‐squares approximation. The least‐squares formulation for classical elasto‐plasticity and its extension to an incrementally objective formulation for finite deformation are proposed. In the formulation, equilibrium equation and flow rule are enforced in least‐squares sense, i.e. their squared residuals are minimized, and hardening law and loading/unloading condition are enforced pointwise at each integration point. The closest point projection method for the integration of rate‐form constitutive equation is inherently involved in the formulation, and thus the radial‐return mapping algorithm is not performed explicitly. The proposed formulation is a mixed‐type method since the residuals are represented in a form of first‐order differential system using displacement and stress components as nodal unknowns. Also the penalty schemes for the enforcement of boundary and frictional contact conditions are devised and the reshaping of nodal supports is introduced to avoid the difficulties due to the severe local deformation near contact interface. The proposed method does not employ structure of extrinsic cells for any purpose. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A new boundary element formulation is developed to analyze two‐dimensional size‐dependent piezoelectric response in isotropic dielectric materials. The model is based on the recently developed consistent couple stress theory, in which the couple‐stress tensor is skew‐symmetric. For isotropic materials, there is no classical piezoelectricity, and the size‐dependent piezoelectricity or flexoelectricity effect is solely the result of coupling of polarization to the skew‐symmetric mean curvature tensor. As a result, the size‐dependent effect is specified by one characteristic length scale parameter l, and the electromechanical effect is specified by one flexoelectric coefficient f. Interestingly, in this size‐dependent multi‐physics model, the governing equations are decoupled. However, the problem is coupled, because of the existence of a flexoelectric effect in the boundary couple‐traction and normal electric displacement. We discuss the boundary integral formulation and numerical implementation of this size‐dependent piezoelectric boundary element method, which provides a boundary‐only formulation involving displacements, rotations, force‐tractions, couple‐tractions, electric potential, and normal electric displacement as primary variables. Afterwards, we apply the resulting BEM formulation to several computational problems to confirm the validity of the numerical implementation and to explore the physics of the flexoelectric coupling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A new efficient meshfree method is presented in which the first‐order least‐squares method is employed instead of the Galerkin's method. In the meshfree methods based on the Galerkin formulation, the source of many difficulties is in the numerical integration. The current method, in this respect, has different characteristics and is expected to remove some of the integration‐related problems. It is demonstrated through numerical examples that the present formulation is highly robust to integration errors. Therefore, numerical integration can be performed with great ease and effectiveness using very simple algorithms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号