首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research demonstrates that an epoxy nanocomposite can be made through electron beam (e‐beam) curing. The nanofillers can be two‐dimensional (layered‐silicate) and zero‐dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered‐silicate epoxy nanocomposite can be cured to a high degree of curing. The transmission electron microscopy (TEM) and small‐angle X‐ray scattering of the e‐beam‐cured layered‐silicate epoxy nanocomposites demonstrate the intercalated nanostructure or combination of exfoliated and intercalated nanostructure. The TEM images show that the spherical silica epoxy nanocomposite has the morphology of homogeneous dispersion of aggregates of silica nanoparticles. The aggregate size is ~ 100 nm. The dynamic mechanical analysis shows that the storage modulus of the spherical silica nanocomposite has been improved, and the glass transition temperature can be very high (~ 175°C). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Hexagonal boron nitride (hBN), a two‐dimensional nanofiller with good mechanical properties, high thermal conductivity and excellent lubrication properties, has the potential to substantially reinforce polymers to form nanocomposites with advanced properties. In this study, we successfully prepared hBN nanosheets with a thickness of a few atoms by using amine‐capped aniline trimer (AT) as dispersant. Epoxy/hBN nanocomposites were prepared by curing reaction of epoxy E51, Jeffamine D230 and AT‐modified hBN nanosheets, where the hBN contents were 0.5, 1, 2 and 4 wt%. An increase in contact angle of the epoxy/hBN nanocomposites was evident in the presence of hBN nanosheets, implying an increase in the hydrophobic nature of the composites. The as‐prepared composites exhibited enhanced mechanical and tribological performance compared to pure epoxy resin. This effectiveness in improving the mechanical, friction and wear behavior of the epoxy composites could be attributed to the complementary action of excellent mechanical properties, lubrication and thermal conductivity of hBN nanofillers. © 2016 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Carbon nanotubes (CNTs) are fast becoming key components in the production of high‐strength composite materials. Two methods to prepare nanocomposites by covalent bonding between an epoxy matrix and functionalised CNTs that acted as cross‐linkers during polymerisation were investigated. RESULTS: In the standard method, 1 wt% functionalised CNTs was dispersed in epoxy, hardener was added and the composite was cured. In the masterbatch approach, 1 wt% functionalised CNTs was mixed with epoxy in the presence of triethylamine accelerator, then cured. This yielded partially cured epoxy; additional hardener was required to achieve complete curing. Improvements were observed in storage modulus (E′), flexural modulus (EB), wear resistance and hardness. Thermal stability did not change appreciably for samples prepared by either the standard or masterbatch methods. Variations in the results obtained as a function of preparation method, functionalised CNTs and hardener used are discussed. CONCLUSION: Epoxy nanocomposites having improved mechanical properties were obtained by incorporating functionalised CNTs. Better interaction between the epoxy and CNT was achieved using the masterbatch method; this was attributed to covalent bonding between the CNTs and epoxy. However, optimisation of the CNTs, accelerator and hardener used in composite preparation is required to obtain improved physical properties. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005  相似文献   

5.
Epoxy resins are widely used in a variety of applications because of their high chemical and corrosion resistance and good mechanical properties. But few types of epoxy resins are brittle and possess low toughness which makes them unsuitable for several structural applications. In this work, carbon nanofibres have been dispersed uniformly into the epoxy resin at a very low concentration (0.07 vol. %). Improvement of 98% in Young modulus, 24% in breaking stress and 144% in work of rupture was achieved in the best sample. The emphasis is on achieving uniform dispersion of carbon nanofibers into epoxy resin using a combination of techniques such as ultrasonication, use of solvent and surfactants. The fracture surfaces of the specimens were studied under scanning electron microscope to see the fracture mechanism of nanocomposites under tensile load and correlate it to the enhancement in their properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A novel organic rectorite (OREC) was prepared by treating the natural sodium‐rectorite (Na‐REC) with ionic liquid 1‐hexadecyl‐3‐methylimidazolium bromide ([C16mim]Br). X‐ray diffraction (XRD) analysis showed that the interlayer spacing of the OREC was expanded from 2.23nm to 3.14nm. Furthermore, two types of OREC/epoxy nanocomposites were prepared by using epoxy resin (EP) as matrix, 2‐ethyl‐4‐methylimidazole (2‐E‐4‐MI) and tung oil anhydride (TOA) as curing agents, respectively. XRD and transmission electron microscope (TEM) analysis showed that the intercalated nanocomposite was obtained with addition of the curing agent 2‐E‐4‐MI, and the exfoliated nanocomposite was obtained with addition of the curing agent TOA when the OREC content was less than 2 wt %. For the exfoliated nanocomposite, the mechanical and thermal property tests indicated that it had the highest improvement when OREC content was 2 wt% in EP. Compared to pure EP, 60.3% improvement in tensile strength, 26.7% improvement in bending strength, 34% improvement in bending modulus, 14°C improvement in thermal decomposition temperature (Td) and 5.7°C improvement in glass transition temperature (Tg) were achieved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
环氧树脂基纳米复合材料的研究进展   总被引:6,自引:2,他引:6  
曲忠先  焦剑  王雪荣  顾军渭 《粘接》2005,26(3):43-45
介绍了环氧树脂基纳米复合材料的制备方法、性能、作用机理及研究进展。  相似文献   

8.
A bisphenol A‐based epoxy resin was modified with pristine sepiolite and an organically surface‐modified sepiolite and thermally cured using two different curing agents: an aliphatic and a cycloaromatic diamine. The nanocomposites were characterized by dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and electron microscopy. The initial sepiolite–epoxy mixtures show a better dispersion for the sepiolite‐modified system that forms a percolation network structure. Mechanical properties have also been determined. The flexural modulus of the epoxy matrix slightly increases by the incorporation of the organophilic sepiolite. The flexural strength of the sepiolite‐modified resin cured with the aliphatic diamine increased by 10%, while the sepiolite‐modified resin cured with the cycloaromatic diamine resulted in a lower flexural strength, as compared with the unmodified resin. Electron micrographs revealed a better nanodispersion of the sepiolite in the epoxy matrix for the organophilic modified sepiolite nanocomposite. The initial thermal decomposition temperature did not change significantly with the addition of sepiolite, whereas mechanical properties were affected. The reduced flexural strength was attributed to the stress concentrations caused by the sepiolite modifier. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The poor dispersion of carbon black (CB) in thermoplastic polymers has provided a space for improving the various properties of nanocomposites. In this study, nanoclay (NC) was introduced into CB/thermoplastic composites to improve the dispersion of CB and, finally, to improve the thermal or mechanical performance. We noticed that there was a simultaneous enhancement in the mechanical and thermal performances of the nanocomposites because of the combination of the NC and CB. The information obtained from the mechanical and thermal studies indicated that the properties were improved to an appreciable extent because of the plastic–plastic/CB/NC combination. The tensile strength of polycarbonate (PC) was observed to be enhanced by 9.4% only because of the addition of CB, although when poly(methyl methacrylate) (PMMA) was used as a matrix material along with PC, the tensile strength improved by 25%, although the tensile strength of PMMA is much lower than that of PC. This confirmed that the tensile properties of the polymer composites also depended on the plastic–plastic interaction phenomenon. Moreover, the tensile strengths of the different blended nanocomposites system increased by around 42.5% with the addition of NC. A significant improvement of 22% was achieved in the thermal stability of the PMMA composites with the addition of CB. However, the addition of NC provided further improvement in the thermal decomposition temperature by only 3.7%. This showed that the thermal stability of the polymer nanocomposites was slightly affected by the addition of NC. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41477.  相似文献   

10.
By varying the cyanate/epoxy ratio, three polyetherimide(PEI)‐modified bisphenol A dicyanate–novolac epoxy resin blends with different epoxy contents were prepared. The effects of epoxy content on the dynamic mechanical behaviour of those blends were investigated by dynamic mechanical thermal analysis. The results showed that the glass transition temperature of the cyanate–epoxy network (Tg1) in the modified blend decreases with epoxy content. When the epoxy content increases, both the width of the glass transition of the cyanate–epoxy network and its peak density are depressed substantially. Although the tangent delta peak value of PEI is basically independent of epoxy content, the Tg of PEI (Tg2) decreases with epoxy content. Tg1 is independent of the PEI loading. When Tg1 is lower than Tg2, however, the Tg1 in the blend with revised phase structure is substantially lower than other blends. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
采用液晶环氧预聚物(PHQEP)与有机蒙脱土(OMMT)共混改性环氧树脂制备三元共混体系的环氧基复合材料。用X射线衍射法(XRD)测试了有机化蒙脱土在被插层前后片层间距的变化,通过DSC、TGA及SEM等对PHQEP/OMMT增韧改性环氧树脂固化体系的力学性能,热性能及微观相态结构进行了研究。结果表明:当PHQEP质量分数为5%,添加1.5%的有机蒙脱土可以使环氧树脂的冲击强度达到最大值23.43 kJ/m2,比纯环氧树脂提高2倍左右,玻璃化转变温度及5%热分解温度比纯环氧树脂分别高出15℃和27℃。PHQEP与OMMT的加入使纳米复合材料的力学性能和热性能得到明显提高。  相似文献   

12.
环氧树脂/蒙脱土纳米复合材料的制备与性能   总被引:1,自引:0,他引:1  
徐鼐  贾德民 《粘接》2010,(1):58-62
重点综述了影响蒙脱土片层在环氧基体中剥离的主要因素。根据环氧树脂/蒙脱土纳米复合材料的结构特点,解释了其力学性能、热性能、耐腐蚀和阻隔性能得到明显改善的原因。  相似文献   

13.
Hydroxyl terminated poly(ether ether ketone) oligomer with pendant methyl group (PEEKMOH) was prepared. Ternary nanocomposites were processed by blending PEEKMOH oligomer with diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin along with organically modified montmorillonite (Cloisite 25A) followed by curing with 4,4'‐diamino diphenyl sulfone. Tensile moduli and flexural moduli were increased, while the tensile strength and Izod impact strength were decreased with increase in clay content. Similarly, storage moduli and loss moduli were increased and glass transition temperature was decreased as the percentage of clay increased. X‐ray diffractograms showed exfoliated morphology even with higher concentration of clay content (8 phr). Scanning electron microscopy of fractured surfaces and tensile failed specimens revealed slow crack propagation and increase in river markings with nanoclay incorporation confirming the improvement in toughness. The domain size of PEEKMOH was decreased with the incorporation of nanoclay into the epoxy matrix, indicating the restriction of growth mechanism by nucleation during phase separation. With increase in clay content, phase separation disappeared indicating gelation occurs before phase separation. Fracture toughness was increased with the addition of PEEKMOH and clay in epoxy resin. Coefficient of thermal expansion of nanocomposites decreases up to 3 phr clay concentrations thereafter it increases. A marginal increase in thermal stability was observed with increase in clay content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Comprehensive high‐performance epoxy nanocomposites were successfully prepared by co‐incorporating organo‐montmorillonite (o‐MMT) and nano‐SiO2 into epoxy matrix. Because of the strong interaction between nanoscale particles, the MMT layers were highly exfoliated, and the exfoliated nanoscale MMT monoplatelets took an interlacing arrangement with the nano‐SiO2 particles in the epoxy matrix, as evidenced by X‐ray diffraction measurement and transmission electron microscopy inspection. Mechanical tests and thermal analyses showed that the resulting epoxy/o‐MMT/nano‐SiO2 nanocomposites improved substantially over pure epoxy and epoxy/o‐MMT nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temperature. This study suggests that co‐incorporating two properly selected nanoscale particles into polymer is one pathway to success in preparing comprehensive high‐performance polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Epoxy‐based blends containing poly(ethylene oxide)‐co‐poly(propylene oxide)‐co‐poly(ethylene oxide) (PEO–PPO–PEO) block copolymers with different PEO/PPO molar ratios have been investigated in order to analyze the effect of the generated morphologies and interactions between components on the mechanical properties of the blends. Mechanical, morphological and dynamic mechanical analyses indicate that the observed increase of flexural modulus can be related to the decrease of free volume. In modified systems that remain miscible, an increase of flexural modulus, strength and fracture toughness can be observed. Also, macrophase‐ and microphase‐separated systems show an increase of fracture toughness but not of flexural modulus and strength at low contents of block copolymers. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Both epoxy resin and acid‐modified multiwall carbon nanotube (MWCNT) were treated with 3‐isocyanatopropyltriethoxysilane (IPTES). Scanning electron microscopy (SEM) and transmission electronic microscope (TEM) images of the MWCNT/epoxy composites have been investigated. Tensile strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 41% comparing to the neat epoxy. Young's modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 52%. Flexural strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 145% comparing to neat epoxy. Flexural modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 31%. Surface and volume electrical resistance of MWCNT/epoxy composites were decreased with IPTES‐MWCNT content by 2 orders and 6 orders of magnitude, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Carbon fibre reinforced epoxy composites were fabricated from the matrix resin diglycidyl ether of bisphenol-A and novel tetrafunctional epoxy resins N,N,N′,N′-tetraglycidyl-2,2-bis[4-(4-aminophenoxy)phenyl]propane and N,N,NN′-tetraglycidyl-1,1 ′-bis[4-(4-aminophenoxy)phenyl]cyclohexane using diaminodiphenyl methane as curing agent. Mechanical properties and chemical resistance of the composites were determined. Significant improvements in the mechanical properties were observed by adding epoxy fortifier to the resin-curing agent mixtures before fabrication of composites.  相似文献   

18.
Aluminum nitride nanoparticle (nano‐AlN) organically modified with the silane‐containing epoxide groups (3‐glycidoxypropyltrimethoxy silane, GPTMS) was incorporated into a mixture of poly(ether imide) (PEI), and methyl hexahydrophthalic anhydride‐cured bisphenol A diglycidyl ether grafted by GPTMS was prepared for nanocomposite. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were used to investigate the microscopic structures of nanocomposites. According to experimental results, it was shown that addition of nano‐AlN and PEI into the modified epoxy could lead to the improvement of the impact and bend strengths. When the concentrations of nano‐AlN and PEI were 20 and 10 pbw, respectively, the toughness/stiffness balance could be achieved. Dynamic mechanical analysis (DMA) results displayed that two glass transition temperatures (Tg) found in the nanocomposites were assigned to the modified epoxy phase and PEI phase, respectively. As nano‐AlN concentration increased, Tg value of epoxy phase had gradually increased, and the storage modulus of the nanocomposite at the ambient temperature displayed an increasing tendency. Additionally, thermal stability of the nanocomposite was apparently improved. The macroscopic properties of nanocomposites were found to be strongly dependent on their components, concentrations, dispersion, and resulted morphological structures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Epoxy nanocomposites reinforced by nano‐sized sepiolite are investigated. Sepiolite particles and the nanocomposites were characterized by SEM, TEM, XRD, and IR. The level of reinforcement is assessed from impact strength and flexural strength. It is shown that significant improvement in mechanical property is obtained for all reinforced nanocomposites and the addition of 1% sepiolite appears to be an optimum blend ratio. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

20.
Fibre reinforced plastic (FRP) composites prepared from E glass woven fabrics as reinforcing agent and carboxyl terminated poly(ethylene glycol) adipate (CTPEGA) modified epoxy as a matrix, were subjected to dynamic mechanical thermal analysis at a fixed frequency of 5 Hz. The volume fraction of glass was about 0.45. The concentration of CTPEGA in the matrix was varied gradually from 0 to 40 phr (phr stands for parts per hundred parts of resin), to investigate the effect of CTPEGA concentration on the dynamic properties of the composites. It was found that the tan δ peak temperature and storage modulus gradually decrease with incorporation of CTPEGA. However, the tan δ peak value increases up to 20 phr of CTPEGA concentration and decreases thereafter. The same trend was obtained in the case of impact strength. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号