首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach for modelling discrete cracks in meshfree methods is described. In this method, the crack can be arbitrarily oriented, but its growth is represented discretely by activation of crack surfaces at individual particles, so no representation of the crack's topology is needed. The crack is modelled by a local enrichment of the test and trial functions with a sign function (a variant of the Heaviside step function), so that the discontinuities are along the direction of the crack. The discontinuity consists of cylindrical planes centred at the particles in three dimensions, lines centred at the particles in two dimensions. The model is applied to several 2D problems and compared to experimental data. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
该文将扩展有限元方法应用到几何非线性及断裂力学问题中,并研制开发了扩展有限元Fortran程序。扩展有限元法其计算网格与不连续面相互独立,因此模拟移动的不连续面时无需对网格进行重新剖分。该文推导了几何非线性扩展有限元法的公式,在常规有限元位移模式中,基于单位分解的思想加进一个阶跃函数和二维渐近裂尖位移场,反映裂纹处位移的不连续性,并用2个水平集函数表示裂纹;采用拉格朗日描述方程建立了有限变形几何非线性扩展有限元方程;采用多点位移外推法计算裂纹应力强度因子并通过最小二乘法拟合得到更精确的结果。最后给出的大变形算例表明该文提出的几何非线性的断裂力学扩展有限元方法和相应的计算机程序是合理可行的,而且对于含裂纹及裂纹扩展的问题,扩展有限元法优于传统的有限元法。  相似文献   

3.
A simple and less-costly MLPG method using the Heaviside step function as the test function in each sub-domain avoids the need for both a domain integral, except inertial force and body force integral in the attendant symmetric weak form, and a singular integral for analysis of elasto-dynamic deformations near a crack tip. The Newmark family of the methods is applied into the time integration scheme. A numerical example, namely, a rectangular plate with a central crack with plate edges parallel to the crack axis loaded in tension is solved by this method. The results show that the stresses near the crack tip agree well with those obtained from another MLPG method using the weight function of the moving least square approximation as a test function of the weighted residual method. Time histories of dynamic stress intensity factors (DSIF) for mode-I are determined form the computed stress fields.  相似文献   

4.
 A meshless method is developed for the stress analysis of two-dimensional solids, based on a local weighted residual method with the Heaviside step function as the weighting function over a local subdomain. Trial functions are constructed using radial basis functions (RBF). The present method is a truly meshless method based only on a number of randomly located nodes. No domain integration is needed, no element matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Effects of the sizes of local subdomain and interpolation domain on the performance of the present method are investigated. The behaviour of shape parameters of multiquadrics (MQ) has been systematically studied. Example problems in elastostatics are presented and compared with closed-form solutions and show that the proposed method is highly accurate and possesses no numerical difficulties. Received: 10 November 2002 / Accepted: 5 March 2003  相似文献   

5.
首先采用奇异权函数对对称光滑粒子流体动力学(SSPH)近似进行了修正,使其构造的形函数近似满足d函数性质,方便无网格法中本质边界条件施加;然后应用修正的SSPH 近似法构造试函数,结合以Heaviside 函数为权函数的局部弱形式,提出了一种新的求解弹性静力问题的无网格局部Petrov-Galerkin 法;最后应用新的无网格法计算了一系列数值算例,结果表明:该方法具有良好的精度和收敛性。  相似文献   

6.
7.
A combination of the extended finite element method (XFEM) and the mesh superposition method (s‐version FEM) for modelling of stationary and growing cracks is presented. The near‐tip field is modelled by superimposed quarter point elements on an overlaid mesh and the rest of the discontinuity is implicitly described by a step function on partition of unity. The two displacement fields are matched through a transition region. The method can robustly deal with stationary crack and crack growth. It simplifies the numerical integration of the weak form in the Galerkin method as compared to the s‐version FEM. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, three dimensional (3D) static and dynamic analysis of thick functionally graded plates based on the Meshless Local Petrov–Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains using a Heaviside step function as test function. In this case, governing equations corresponding to the stiffness matrix do not involve any domain integration or singular integrals. Nodal points are distributed in the 3D analyzed domain and each node is surrounded by a cubic sub-domain to which a local integral equation is applied. The meshless approximation based on the three-dimensional Moving Least-Square (MLS) is employed as shape function to approximate the field variable of scattered nodes in the problem domain. The Newmark time integration method is used to solve the system of coupled second-order ODEs. Effective material properties of the plate, made of two isotropic constituents with volume fractions varying only in the thickness direction, are computed using the Mori–Tanaka homogenization technique. Numerical examples for solving the static and dynamic response of elastic thick functionally graded plates are demonstrated. As a result, the distributions of the deflection and stresses through the plate thickness are presented for different material gradients and boundary conditions. The effects of the volume fractions of the constituents on the centroidal deflection are also investigated. The numerical efficiency of the proposed meshless method is illustrated by the comparison of results obtained from previous literatures.  相似文献   

9.
A methodology for solving three‐dimensional crack problems with geometries that are independent of the mesh is described. The method is based on the extended finite element method, in which the crack discontinuity is introduced as a Heaviside step function via a partition of unity. In addition, branch functions are introduced for all elements containing the crack front. The branch functions include asymptotic near‐tip fields that improve the accuracy of the method. The crack geometry is described by two signed distance functions, which in turn can be defined by nodal values. Consequently, no explicit representation of the crack is needed. Examples for three‐dimensional elastostatic problems are given and compared to analytic and benchmark solutions. The method is readily extendable to inelastic fracture problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
New enrichment functions are proposed for crack modelling in orthotropic media using the extended finite element method (XFEM). In this method, Heaviside and near‐tip functions are utilized in the framework of the partition of unity method for modelling discontinuities in the classical finite element method. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore, mesh generation is directly performed ignoring the existence of any crack while the method remains capable of extending the crack without any remeshing requirement. Furthermore, the type of elements around the crack‐tip remains the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Mixed‐mode stress intensity factors (SIFs) are evaluated to determine the fracture properties of domain and to compare the proposed approach with other available methods. In this paper, the interaction integral (M‐integral) is adopted, which is considered as one of the most accurate numerical methods for calculating stress intensity factors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Deformations such as crack opening and sliding displacements in a cracked viscoelastic body are numerically investigated by the extended finite element method (XFEM). The solution is carried out directly in time domain with a mesh not conforming to the crack geometry. The generalized Heaviside function is used to reflect the displacement discontinuity across a crack surface while the basis functions extracted from the viscoelastic asymptotic fields are used to manifest the gradient singularity at a crack tip. With these treatments, the XFEM formulations are derived in an incremental form. In evaluating the stiffness matrix, a selective integration scheme is suggested for problems with high Poisson ratios often encountered in viscoelastic materials over different element types in the XFEM. Numerical examples show that the crack opening displacement and crack sliding displacement are satisfactory.  相似文献   

12.
利用基于滑动Kriging插值的无网格局部Petrov-Galerkin (MLPG) 法来求解二维结构动力问题,Heaviside分段函数作为局部弱形式的权函数并采用精细积分法来离散时间域。基于滑动Kriging插值构造的形函数满足Kronecker Delta性质,因此可以直接施加本质边界条件。刚度矩阵形成过程中只涉及到边界积分,而没有涉及到区域积分和奇异积分。计算结果表明:基于滑动Kriging插值的MLPG法具有模拟简单、计算精度高等优点。  相似文献   

13.
The initiation and evolution of transverse matrix cracks and delaminations are predicted within a mesh‐independent cracking (MIC) framework. MIC is a regularized extended finite element method (x‐FEM) that allows the insertion of cracks in directions that are independent of the mesh orientation. The Heaviside step function that is typically used to introduce a displacement discontinuity across a crack surface is replaced by a continuous function approximated by using the original displacement shape functions. Such regularization allows the preservation of the Gaussian integration schema regardless of the enrichment required to model cracking in an arbitrary direction. The interaction between plies is anchored on the integration point distribution, which remains constant through the entire simulation. Initiation and propagation of delaminations between plies as well as intra‐ply MIC opening is implemented by using a mixed‐mode cohesive formulation in a fully three‐dimensional model that includes residual thermal stresses. The validity of the proposed methodology was tested against a variety of problems ranging from simple evolution of delamination from existing transverse cracks to strength predictions of complex laminates withouttextita priori knowledge of damage location or initiation. Good agreement with conventional numerical solutions and/or experimental data was observed in all the problems considered. Published 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

14.
A boundary element method (BEM) was specially developed for a crack under crack face pressure in arbitrary two-dimensional problems. It is based on the basic stress solutions for an infinite plane with a crack loaded by body forces and moment at arbitrary point, which were derived by Erdogan from the Kolosov-Muskhelishvili fundamental functions, and the basic solution for a crack in an infinite plate under crack surface pressure, so that the crack surface need not be modelled. Therefore, minimal modelling efforts are needed to obtain stress intensity factors with the method and its accuracy was established by comparing the obtained results with the exact SIF results and acceptable results for various problems of arbitrary shapes and loadings.  相似文献   

15.
In this study, an improved crack analysis technique by element‐free Galerkin method (EFGM) with auxiliary supports is proposed. To efficiently model the singularity and the discontinuity of the crack, a singular basis function which varies only on the auxiliary supports is added to enrich the standard EFG approximation and the discontinuous shape function is used in the vicinity of the crack surface. The proposed technique improves the accuracy in the near tip field, by using only an initial node arrangement without any modification until the completion of an analysis. A parametric study, which can guide the analyst on the reasonable choice for the formulation and modelling parameters to be used in the technique, is performed on a relative stress norm error and stress intensity factor. In addition, some numerical examples are analysed to verify the effectiveness of the proposed technique for a crack problem. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A two-step method, coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM), is developed in this paper for modelling cohesive crack growth in quasi-brittle normal-sized structures such as concrete beams. In the first step, the crack trajectory is fully automatically predicted by a recently-developed simple remeshing procedure using the SBFEM based on the linear elastic fracture mechanics theory. In the second step, interfacial finite elements with tension-softening constitutive laws are inserted into the crack path to model gradual energy dissipation in the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the proposed method. The numerical results demonstrate that this two-step SBFEM-FEM coupled method can predict both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for crack growth problems with strong snap-back phenomenon. The effects of the tensile strength, the mode-I and mode-II fracture energies on the predicted load-displacement relations are also discussed.  相似文献   

17.
A novel method for derivation of mesh-free shape functions is proposed. The first step in the method is to approximate a function and its derivatives through non-uniform-rational-B-spline (NURBS) basis functions. However since NURBS functions neither reproduce polynomials of degree higher than one nor interpolate the control points (also referred to as grid or nodal points), the approximated function leads to uncontrolled errors over the domain including the nodal points. Accordingly the error function in the NURBS approximation and its derivatives are reproduced via a family of non-NURBS basis functions. The non-NURBS basis functions are constructed using a polynomial reproduction condition and added to the NURBS approximation of the function obtained in the first step. Since any desired order of continuity in the approximation can be achieved through NURBS, the proposed error reproducing kernel method (ERKM) can even approximate functions with discontinuous derivatives. Moreover, thanks to the variation diminishing property of NURBS, it has advantages in representing sharp layers without the so-called Gibbs‘ or Runge’s phenomena. Since derivatives are reproduced within polynomial spaces of appropriately reduced dimensions, differentiability requirements of the kernel functions are avoided. Any compactly supported continuous function, monotonically decreasing on either side of its maximum, may be used as the weight function (unlike other mesh free approximations). As it turns out, a target function is mainly approximated via NURBS and error functions are just supposed to add corrections, whose magnitudes are typically an order less than those of the NURBS components. The proposed method is observed to be nearly insensitive to the support size of the weight function. The proposed method is next applied to some linear and nonlinear boundary value problems of typical interest in solid mechanics. Some of these results are compared with those obtained via the standard form of RKPM. In the process, the relative numerical advantages and accuracy of the new method are brought out to an extent.  相似文献   

18.
This study develops a frequency-domain method for modelling general transient linear-elastic dynamic problems using the semi-analytical scaled boundary finite element method (SBFEM). This approach first uses the newly-developed analytical Frobenius solution to the governing equilibrium equation system in the frequency domain to calculate complex frequency-response functions (CFRFs). This is followed by a fast Fourier transform (FFT) of the transient load and a subsequent inverse FFT of the CFRFs to obtain time histories of structural responses. A set of wave propagation and structural dynamics problems, subjected to various load forms such as Heaviside step load, triangular blast load and ramped wind load, are modelled using the new approach. Due to the semi-analytical nature of the SBFEM, each problem is successfully modelled using a very small number of degrees of freedom. The numerical results agree very well with the analytical solutions and the results from detailed finite element analyses.  相似文献   

19.
In this work, meshless methods based on the local Petrov–Galerkin approach are proposed for the solution of dynamic problems considering elastic and elastoplastic materials. Formulations adopting the Heaviside step function and the Gaussian weight function as the test functions in the local weak form are considered. The moving least‐square method is used for the approximation of physical quantities in the local integral equations. After spatial discretization is carried out, a non‐linear system of ordinary differential equations of second order is obtained. This system is solved by Newmark/Newton–Raphson techniques. At the end of the paper numerical results are presented, illustrating the potentialities of the proposed methodologies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A meshless local Petrov-Galerkin (MLPG) method is applied to solve laminate plate problems described by the Reissner-Mindlin theory. Both stationary and transient dynamic loads are analyzed here. The bending moment and the shear force expressions are obtained by integration through the laminated plate for the considered constitutive equations in each lamina. The Reissner-Mindlin theory reduces the original three-dimensional (3-D) thick plate problem to a two-dimensional (2-D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding this node. The weak-form on small subdomains with a Heaviside step function as the test functions is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme as a time-stepping method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号