首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new approach to process optimal design in non‐isothermal, steady‐state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo‐mechanical finite element process model so as to cover a wide class of the objective functions and to accept diverse process parameters as design variables, and a derivative‐based approach is adopted as a solution technique. The process model, the formulation for process optimal design, and the schemes for the evaluation of the design sensitivity, and an iterative procedure for design optimization are described in detail. The validity of the schemes for the evaluation of the design sensitivity is examined by performing a series of numerical tests. The capability of the proposed approach is demonstrated through applications to some selected process design problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A computational framework is presented to evaluate the shape as well as non‐shape (parameter) sensitivity of finite thermo‐inelastic deformations using the continuum sensitivity method (CSM). Weak sensitivity equations are developed for the large thermo‐mechanical deformation of hyperelastic thermo‐viscoplastic materials that are consistent with the kinematic, constitutive, contact and thermal analyses used in the solution of the direct deformation problem. The sensitivities are defined in a rigorous sense and the sensitivity analysis is performed in an infinite‐dimensional continuum framework. The effects of perturbation in the preform, die surface, or other process parameters are carefully considered in the CSM development for the computation of the die temperature sensitivity fields. The direct deformation and sensitivity deformation problems are solved using the finite element method. The results of the continuum sensitivity analysis are validated extensively by a comparison with those obtained by finite difference approximations (i.e. using the solution of a deformation problem with perturbed design variables). The effectiveness of the method is demonstrated with a number of applications in the design optimization of metal forming processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In complex forging processes, it is essential to find the optimal deformation path and the optimal preform shape that will lead to the desired final shape and service properties. A sensitivity analysis and optimization for preform billet shape in thermo‐mechanical coupled simulation is developed in this work. Non‐linear sensitivity analysis of temperatures, flow‐stresses, strains and strain‐rates are presented with respect to design variables. Both analytical and finite‐difference gradients are employed to validate the effectiveness of sensitivity analysis developed in this work. Numerous iterations of coupled thermo‐mechanical analysis are performed to determine an optimum preform shape based on a given criterion of minimizing the objective function on effective strain variance within the final forging. The design constraints are imposed on die underfill, material scrap, folding defects and temperatures. In addition, a method for material data processing is given in order to determine the flow stress and its derivatives. The shape optimization scheme is demonstrated with the preform designs of an axisymmetric disk and a plane strain problem. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
In nano‐structures, the influence of surface effects on the properties of material is highly important because the ratio of surface to volume at the nano‐scale level is much higher than that of the macro‐scale level. In this paper, a novel temperature‐dependent multi‐scale model is presented based on the modified boundary Cauchy‐Born (MBCB) technique to model the surface, edge, and corner effects in nano‐scale materials. The Lagrangian finite element formulation is incorporated into the heat transfer analysis to develop the thermo‐mechanical finite element model. The temperature‐related Cauchy‐Born hypothesis is implemented by using the Helmholtz free energy to evaluate the temperature effect in the atomistic level. The thermo‐mechanical multi‐scale model is applied to determine the temperature related characteristics at the nano‐scale level. The first and second derivatives of free energy density are computed using the first Piola‐Kirchhoff stress and tangential stiffness tensor at the macro‐scale level. The concept of MBCB is introduced to capture the surface, edge, and corner effects. The salient point of MBCB model is the definition of radial quadrature used at the surface, edge, and corner elements as an indicator of material behavior. The characteristics of quadrature are derived by interpolating the data from the atomic level laid in a circular support around the quadrature in a least‐square approach. Finally, numerical examples are modeled using the proposed computational algorithm, and the results are compared with the fully atomistic model to illustrate the performance of MBCB multi‐scale model in the thermo‐mechanical analysis of metallic nano‐scale devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A multi‐material topology optimization scheme is presented. The formulation includes an arbitrary number of phases with different mechanical properties. To ensure that the sum of the volume fractions is unity and in order to avoid negative phase fractions, an obstacle potential function, which introduces infinity penalty for negative densities, is utilized. The problem is formulated for nonlinear deformations, and the objective of the optimization is the end displacement. The boundary value problems associated with the optimization problem and the equilibrium equation are solved using the finite element method. To illustrate the possibilities of the method, it is applied to a simple boundary value problem where optimal designs using multiple phases are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An Eulerian finite element formulation for quasi‐state one way coupled thermo‐elasto‐plastic systems is presented. The formulation is suitable for modeling material processes such as welding and laser surfacing. In an Eulerian frame, the solution field of a quasi‐state process becomes steady state for the heat transfer problem and static for the stress problem. A mixed small deformation displacement elasto‐plastic formulation is proposed. The formulation accounts for temperature dependent material properties and exhibits a robust convergence. Streamline upwind Petrov–Galerkin (SUPG) is used to remove spurious oscillations. Smoothing functions are introduced to relax the non‐differentiable evolution equations and allow for the use of gradient (stiffness) solution scheme via the Newton–Raphson method. A 3‐dimensional simulation of a laser surfacing process is presented to exemplify the formulation. Results from the Eulerian formulation are in good agreement with results from the conventional Lagrangian formulation. However, the Eulerian formulation is approximately 15 times faster than the Lagrangian. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo‐hydro‐mechanical behavior of porous media undergoing large deformation. We first formulate a finite‐deformation thermo‐hydro‐mechanics field theory for non‐isothermal porous media. Projection‐based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due to the lack of the two‐fold inf‐sup condition of the equal‐order finite element. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for non‐isothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this thermo‐hydro‐mechanical model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A new rigid‐viscoplastic model that includes the effect of thermal strains when modelling steady‐state metal‐forming processes was developed. A symmetric approximation to the resulting non‐symmetric stiffness matrix was derived. The thermo‐mechanical flow formulation was implemented using the pseudo‐concentrations technique. The new formulation was numerically tested showing that it provides reliable results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A coupled finite element model is developed to analyse the thermo‐mechanical behaviour of a widely used polymer composite panel subject to high temperatures at service conditions. Thermo‐chemical and thermo‐mechanical models of previous researchers have been extended to study the thermo‐chemical decomposition, internal heat and mass transfer, deformation and the stress state of the material. The phenomena of heat and mass transfer and thermo‐mechanical deformation are simulated using three sets of governing equations, i.e. energy, gas mass diffusion and deformation equations. These equations are then assembled into a coupled matrix equation using the Bubnov–Galerkin finite element formulation and then solved simultaneously at each time interval. An experimentally tested 1.09 cm thick glass‐fibre woven‐roving/polyester resin composite panel is analysed using the numerical model. Results are presented in the form of temperature, pore pressure, deformation, strain and stress profiles and discussed. The maximum normal stress failure criterion is used in order to establish the load‐bearing capability of the composite panel. Significant pore gas pressure build‐ups (to 0.8 MPa and higher) have been perceived at high thermo‐chemical decomposition rates where the material experiences a complex expansion/contraction phenomenon. It is found that the composite panel experiences structural instability at elevated temperatures up to 300°C but retains its integrity even under moderate external loading. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes the use of topology optimization as a synthesis tool for the design of large‐displacement compliant mechanisms. An objective function for the synthesis of large‐displacement mechanisms is proposed together with a formulation for synthesis of path‐generating compliant mechanisms. The responses of the compliant mechanisms are modelled using a total Lagrangian finite element formulation, the sensitivity analysis is performed using the adjoint method and the optimization problem is solved using the method of moving asymptotes. Procedures to circumvent some numerical problems are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the finite element formulation of a transition element for consistent coupling between shell and beam finite element models of thin‐walled beam‐like structures in thermo‐elastic problems is presented. Thin‐walled beam‐like structures modelled only with beam elements cannot be used to study local stress concentrations or to provide local mechanical or thermal boundary conditions. For this purpose, the structure has to be modelled using shell elements. However, computations using shell elements are a lot more expensive as compared to beam elements. The finite element model can be more efficient when the shell elements are used only in regions where the local effects are to be studied or local boundary conditions have to be provided. The remaining part of the structure can be modelled with beam elements. To couple these two models (i.e. shell and beam models) at transitional cross‐sections, transition elements are derived here for thermo‐elastic problems. The formulation encloses large displacement and rotational behaviour, which is important in case of thin‐walled beam‐like structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A mixed finite element for coupled thermo‐hydro‐mechanical (THM) analysis in unsaturated porous media is proposed. Displacements, strains, the net stresses for the solid phase; pressures, pressure gradients, Darcy velocities for pore water and pore air phases; temperature, temperature gradients, the total heat flux are interpolated as independent variables. The weak form of the governing equations of coupled THM problems in porous media within the element is given on the basis of the Hu–Washizu three‐filed variational principle. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of the THM constitutive model for unsaturated porous media based on the CAP model. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elasto‐plastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is utilized. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization and the softening behaviours caused by thermal and chemical effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Because of the necessity for considering various creative and engineering design criteria, optimal design of an engineering system results in a highly‐constrained multi‐objective optimization problem. Major numerical approaches to such optimal design are to force the problem into a single objective function by introducing unjustifiable additional parameters and solve it using a single‐objective optimization method. Due to its difference from human design in process, the resulting design often becomes completely different from that by a human designer. This paper presents a novel numerical design approach, which resembles the human design process. Similar to the human design process, the approach consists of two steps: (1) search for the solution space of the highly‐constrained multi‐objective optimization problem and (2) derivation of a final design solution from the solution space. Multi‐objective gradient‐based method with Lagrangian multipliers (MOGM‐LM) and centre‐of‐gravity method (CoGM) are further proposed as numerical methods for each step. The proposed approach was first applied to problems with test functions where the exact solutions are known, and results demonstrate that the proposed approach can find robust solutions, which cannot be found by conventional numerical design approaches. The approach was then applied to two practical design problems. Successful design in both the examples concludes that the proposed approach can be used for various design problems that involve both the creative and engineering design criteria. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Determining the load‐bearing capacity of engineering structures is essential for their design. In the case of varying thermo‐mechanical loading beyond the elastic limit, the statical shakedown analysis constitutes a particularly suitable tool for this. The application of the statical shakedown theorem, however, leads to a nonlinear convex optimization problem, which is typically characterized by large numbers of variables and constraints. In the present work, this optimization problem is solved by a primal–dual interior‐point algorithm, which shows a remarkable performance due to its problem‐tailored formulation. Nevertheless, the solution procedure remains still a demanding task from computational point of view. Thus, the aim of this paper is to tackle the task of solving large‐scale problems by use of a new so‐called selective algorithm. This algorithm detects automatically the plastically most affected zones within the structure, which have the highest influence on the solution. The entire system is then reduced to a substructure consisting of these zones, based upon which a new optimization problem can be set up, which is solved with significantly less effort. Consequently, the running time decreases drastically, as is shown by application to numerical examples from the field of power plant engineering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A finite element algorithm has been developed for the efficient analysis of smart composite structures with piezoelectric polymer sensors or/and actuators based on piezoelectro‐hygro‐thermo‐viscoelasticity. Variational principles for anisotropic coupled piezoelectro‐hygro‐thermo‐viscoelasto‐dynamic problems have also been proposed in this study. As illustrative studies, dynamic responses in laminated composite beams and plates with PVDF sensors and actuators are obtained as functions of time using the present finite element procedures. The voltage feedback control scheme is utilized. The proposed numerical method can be used for analysing problems in the design of smart structures as well as smart sensors and actuators. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of the present work is to model and to simulate the coupling between the electric and mechanical fields. A new finite element approach is proposed to model strong electro‐mechanical coupling in micro‐structures with capacitive effect. The proposed approach is based on a monolithic formulation: the electric and the mechanical fields are solved simultaneously in the same formulation. This method provides a tangent stiffness matrix for the total coupled problem which allows to determine accurately the pull‐in voltage and the natural frequency of electro‐mechanical systems such as MEMs. To illustrate the methodology results are shown for the analysis of a micro‐bridge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A framework to solve shape optimization problems for quasi‐static processes is developed and implemented numerically within the context of isogeometric analysis (IGA). Recent contributions in shape optimization within IGA have been limited to static or steady‐state loading conditions. In the present contribution, the formulation of shape optimization is extended to include time‐dependent loads and responses. A general objective functional is used to accommodate both structural shape optimization and passive control for mechanical problems. An adjoint sensitivity analysis is performed at the continuous level and subsequently discretized within the context of IGA. The methodology and its numerical implementation are tested using benchmark static problems of optimal shapes of orifices in plates under remote bi‐axial tension and pure shear. Under quasi‐static loading conditions, the method is validated using a passive control approach with an a priori known solution. Several applications of time‐dependent mechanical problems are shown to illustrate the capabilities of this approach. In particular, a problem is considered where an external load is allowed to move along the surface of a structure. The shape of the structure is modified in order to control the time‐dependent displacement of the point where the load is applied according to a pre‐specified target. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The recent developments in joining technologies and the increasing use of composites materials in structural design justify the wide interest of structural mechanics researchers in bonded joints. Joints often represent the weakness zone of the structure and appropriate and rigorous mechanical models are required in order to describe deformation, durability and failure. The present work is devoted to the theoretical formulation and numerical implementation of an interface model suitable to simulate the time‐dependent behaviour of bonded joints. The interface laws are formulated in the framework of viscoplasticity for generalized standard materials and describe the softening response of the joint along its decohesion process in presence of shear and tensile normal tractions. These laws are derived in a thermodynamic consistent manner and take into account the rate dependency modifications of the fracture process zone making use of a sort of non‐local instantaneous dissipation. The interface constitutive laws are expressed both in rate and discrete incremental form for the purpose of numerical implementation. The consistent tangent matrix is derived. Finally, the problem of model parameters identification is approached making use of the finite element method for the experiments simulation and of an evolution strategy to solve the constrained optimization problem which mathematically represents the parameter identification inverse problem. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This study develops a novel multiscale analysis method to predict thermo‐mechanical performance of periodic porous materials with interior surface radiation. In these materials, thermal radiation effect at microscale has an important impact on the macroscopic temperature and stress field, which is our particular interest in this paper. Firstly, the multiscale asymptotic expansions for computing the dynamic thermo‐mechanical coupling problem, which considers the mutual interaction between temperature and displacement field, are given successively. Then, the corresponding numerical algorithm based on the finite element‐difference method is brought forward in details. Finally, some numerical results are presented to verify the validity and relevancy of the proposed method by comparing it with a direct finite element analysis with detailed numerical models. The comparison shows that the new method is effective and valid for predicting the thermo‐mechanical performance and can capture the microstructure behavior of periodic porous materials exactly.s Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Evaluation of the thermo‐mechanical behaviour and prediction of the service life of cast aluminium alloys are important for the design of automobile engine cylinder heads. In this study, cast Al alloy specimens are extracted from cylinder heads and subjected to in‐phase thermo‐mechanical cyclic loading. The hysteresis curves related to stress and strain were recorded under the individual thermo‐mechanical loading conditions. The number cycles to failure corresponding to multiple mechanical strain and temperature ranges were obtained. It is found that the cyclic stress amplitude decreases and the cyclic softening rate increases with increasing maximum temperature rise. A modified fatigue‐creep model based on energy conservation has been developed for prediction of the fatigue life of cylinder heads. The proposed method shows good agreement with the well‐established Ostergren model and low standard deviations. In summary, the proposed method described in this study provides an option for prediction of the thermo‐mechanical behaviour of metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号