首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John K. Kallitsis  Nikos K. Kalfoglou   《Polymer》1989,30(12):2258-2264
The effectiveness of epoxidized styrene-butadiene-styrene (ESBS) block copolymer as a polymeric compatibilizer for the incompatible polystyrene/poly(vinyl chloride) (PS/PVC) blend was investigated. ESBS at two epoxidation levels (34 and 49 mol% oxirane units) was used and the study covered mainly compositions with up to 30 wt% PS content in the ternary blends. The results support the view that ESBS can serve as a compatibilizer at these levels of epoxidation and when added in amounts in excess of 5 wt%. Ternary blends may also have good elongation properties due to the thermoplastic elastomer character of ESBS.  相似文献   

2.
The compatibilizing efficiency of three different compatibilizers in thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends was investigated after their incorporation via melt‐mixing. The compatibilizers studied were poly‐ε‐caprolactone (PCL), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA). All compatibilizers were synthesized by living anionic polymerization. Investigations of thermal and thermo‐mechanical properties performed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DTMA), respectively, were systematically classified into two groups, i.e. blends of TPU or SAN with 20 wt% of different compatibilizers (so‐called limit conditions) and TPU/SAN 25/75 blends with 5 wt% of different compatibilizers. In order to determine the compatibilizer's location, morphology of TPU/SAN 25/75 blends was studied with transmission electron microscopy (TEM). Different compatibilization activity was found for different systems. Blends compatibilized with PCL showed superior properties over the other blends. Polym. Eng. Sci. 44:838–852, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
Conducting polymeric materials prepared from immiscible blends, such as polypropylene (PP)/polystyrene (PS), together with carbon black (CB), are known to have a relatively high electrical conductivity, because of a selective distribution of CB (double percolation). Melt spinning of immiscible blends containing CB has, however, not been extensively reported on previously. An immiscible 1:1 blend of PP and PS to which 4 wt% CB was added exhibited a very low melt draw‐down ratio at rupture compared wit PP with the same content of CB. By adding 5 wt% SEBS (styrene‐ethylene‐butene‐styrene block copolymer), the ultimate melt draw‐down ratio increased about 10 times, which made the material more suitable for melt spinning. As‐extruded samples of the immiscible blends (with CB) did not have higher electrical conductivities than PP/CB. A heat treatment increased the conductivity of immiscible PP/PS/CB composites, and longer treatment times and higher temperatures promoted the conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Phasemorphology and mechanical properties of blends of high‐impact polystyrene (HIPS) and polycarbonate (PC) blends compatibilized with a polystyrene (PS) and polyarylate (PAr) (PS–PAr) block copolymer were investigated. Over a broad range of composition from 50/50 through 30/70, HIPS/PC blends formed cocontinuous structures induced by the flow during the extrusion or injection‐molding processes. These cocontinuous phases had heterogeneity between the parallel and perpendicular directions to the flow. The micromorphology in the parallel direction to the flow consisted of stringlike phases, which were highly elongated along the flow. Their longitudinal size was long enough to be longer than 180 μm, while their lateral size was shorter than 5 μm, whereas that in the perpendicular direction to the flow showed a cocontinuous phase with regular spacing due to interconnection or blanching among the stringlike phases. The PS–PAr block copolymer was found to successfully compatibilize the HIPS/PC blends. The lateral size of the stringlike phases could be controlled both by the amount of the PS–PAr block copolymer added and by the shear rate during the extrusion or injection‐molding process without changing their longitudinal size. The HIPS/PC blend compatibilized with 3 wt % of the PS–PAr block copolymer under an average shear rate of 675 s?1 showed a stringlike phase whose lateral size was reduced almost equal to the rubber particle size in HIPS. The tensile modulus and yield stress of the HIPS/PC blends could be explained by the addition rule of each component, while the elongation at break was almost equal to that of PC. These mechanical properties of the HIPS/PC blends can be explained by a parallel connection model independent of the HIPS and PC phases. On the other hand, the toughness factor of the HIPS/PC blends strongly depended on the lateral size of the stringlike phases and the rubber particle size in the HIPS. It was found that the size of the string phases and the rubber particle should be smaller than 1.0 μm to attain a reasonable energy absorbency by blending HIPS and PC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2347–2360, 2001  相似文献   

5.
Core–shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core‐shell rubber particles were then blended with polystyrene to prepare PS/PB‐g‐PS blends with a constant rubber content of 20 wt%. PB‐g‐PS particles with a lower PB/PS ratio (≤70/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high‐impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1–3 µm rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub‐micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress‐whitening zone of blends with a PB/PS ratio of 70/30 in PB‐g‐PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation. Subsequently, a compression‐induced activation method was explored to compare the PS/PB‐g‐PS blends with commercial HIPS, and the result show that the toughening mechanisms of the two samples are different. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

7.
Blends of styrene–butadiene–styrene (SBS) or styrene–ethylene/1‐butene–styrene (SEBS) triblock copolymers with a commercial mixture of polystyrene (PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) were prepared in the melt at different temperatures according to the chemical kind of the copolymer. Although solution‐cast SBS/PPO and SBS/PS blends were already known in the literature, a general and systematic study of the miscibility of the PS/PPO blend with a styrene‐based triblock copolymer in the melt was still missing. The thermal and mechanical behavior of SBS/(PPO/PS) blends was investigated by means of DSC and dynamic thermomechanical analysis (DMTA). The results were then compared to analogous SEBS/(PPO/PS) blends, for which the presence of a saturated olefinic block allowed processing at higher temperatures (220°C instead of 180°C). All the blends were further characterized by SEM and TGA to tentatively relate the observed properties with the blends' morphology and degradation temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2698–2705, 2003  相似文献   

8.
The influence of the extrusion process on the morphology and micromechanical behavior of an asymmetric polystyrene‐block‐(polystyrene‐co‐butadiene)‐block‐polystyrene (SBS) star block copolymer and its blends with general‐purpose homopolystyrene (hPS) was studied with films prepared with a single‐screw extruder. The techniques used were transmission electron microscopy and uniaxial tensile testing. Unlike the pure SBS block copolymer possessing a gyroid‐like morphology, whose deformation was found to be insensitive to the processing conditions, the mechanical properties of the blends strongly depended on the extrusion temperature as well as the apparent shear rate. The deformation micromechanism was primarily dictated by the blend morphology. The yielding and cavitation of the nanostructures were the principal deformation mechanism for the blends having a droplet‐like microphase‐separated morphology, whereas cavitation dominated for the blends containing macrophase‐separated layers of polystyrene. The mechanical properties of the blends were further examined with respect to the influence of the temperature and shear rate on the phase behavior of the blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Homogeneous solutions of syndiotactic polystyrene (sPS) in diglycidylether of bisphenol A (DGEBA), containing 2.5, 5 and 7.5 wt % of thermoplastic with or without 0.5 and 1 wt % of poly(styrene‐b‐ethylene oxide) (PS‐b‐PEO) block copolymer, were polymerized using a stoichiometric amount of an aromatic amine hardener, 4,4′‐methylene bis (3‐chloro‐2,6‐diethylaniline) (MCDEA). The dynamic‐mechanical properties and morphological changes of sPS‐(DGEBA/MCDEA) compatibilized with different amount of PS‐b‐PEO have been investigated in this paper. The addition of the block copolymer produced significant changes in the morphologies generated. The size of the dispersed spherical sPS spherulites does not change significantly, but less spherulites of sPS appeared upon network formation in the systems with compatibilizer, what means that addition of compatibilizer in this system delayed crystallization of sPS in sPS‐(DGEBA/MCDEA) systems and change phase separation mechanism from crystallization‐induced phase separation (CIPS) and reaction‐induced phase separation (RIPS) almost only to RIPS. Moreover, PS‐b‐PEO with higher molecular weight of PS block seems to be a more effective compatibilizer than one with lower molecular weight of PS block. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 479–488, 2006  相似文献   

10.
This article investigates the room temperature demixing of oil‐in‐oil emulsions containing styrene (St), polybutadiene (PB), a St‐butadiene star block copolymer (BC), and two polystyrene (PS) samples of different molecular weights and is a contribution toward a better understanding of the stability/instability of the reaction mixture in a bulk high‐impact polystyrene (HIPS) process close to the phase inversion. Twelve bulk prepolymerizations of St in the presence of PB were emulated, at 10%, 15%, and 20% conversion; and with constant grafting efficiencies. All the blends contained 6% in weight of butadiene units. After stirring the blends for 24 h, the decantation demixing process was monitored along 30 days, with daily measurement of the interface levels after appearance of a clear interface. For some of the isolated phases, their unswollen morphologies were observed by transmission electron microscopy. All the isolated phases exhibited macrophase separation into homopolymer‐ and copolymer‐rich macrodomains with lamellar microdomains. The BC showed a greater affinity toward the PS‐rich phase. The separation of an independent BC‐rich phase in the blends containing the high molar mass PS and at high grafting efficiencies, modifies the idea of the graft‐ or BC molecules located at the interface of large PS‐rich and PB‐rich phases. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
Rubber‐toughened polystyrene has been extensively studied and is a well‐established technology. However, the use of thermoplastic elastomers to toughen polystyrene (PS) is new and has the potential for further investigations. In the present study, three EVAs (ethylene–vinyl acetate copolymers) with identical melt flow indices (MFIs), of ~2.5 dgmin?1, but different vinyl acetate (VA) contents, of 9.3 wt% (EVA760), 18.0 wt% (EVA460) and 28.0 wt% (EVA265), were melt blended with PS at 180 °C, and various ASTM test pieces were injection moulded at 200 °C. The polarity of the dispersed phase (ie EVA), has a significant effect on the mechanical properties of the blends. Both mechanical and rheological studies reveal that the uncompatibilised PS/EVA265 blends exhibit some degree of compatibility when the amount of EVA265 is lower than 30 wt%. These results indicate that EVA265 with the highest VA content is the most effective impact modifier for PS. The results clearly show that increasing the VA content in EVA increases the polarity of the dispersed phase, approaching that of the matrix (ie PS) and subsequently improving the compatibility between the two phases in terms of interfacial adhesion. © 2002 Society of Chemical Industry  相似文献   

12.
The nanolatex of polystyrene (PS) synthesized by differential microemulsion polymerization was blended with (vinyl acetate)‐ethylene (VAE) copolymer emulsion at VAE/PS dry weight ratios of 90/10, 80/20, 70/30, and 60/40. This technique provided a well dispersion of PS nanoparticles in the blends without any phase separation or flocculation. The blended emulsions were cast into thin sheet for further characterizations. It was found that the tensile strength, Young's modulus, dynamic mechanical properties, and thermal stability at 50% degradation of VAE were increased by the addition of an appropriate amount (20, 30, 40, and 40 wt%, respectively) of the PS nanoparticles, whereas the elongation at break deteriorated. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Nanostructure formation in thermosets can allow the design of materials with interesting properties. The aim of this work was to obtain a nanostructured epoxy system by self‐assembly of an amphiphilic diblock copolymer in an unreacted epoxy/amine mixture followed by curing of the matrix. The copolymer employed was polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA). The thermoset system, formed by a diglycidyl ether of bisphenol A‐type epoxy resin and diaminodiphenylmethane hardener, was chosen to ensure the miscibility of most of the PMMA block until matrix gelation. Transparent materials with microphase‐separated domains were obtained for copolymer contents lower than 40 wt%. In systems containing 20 and 30 wt% block copolymer, the PS block formed spherical micelles or worm‐like structures before curing, which were stabilized through curing by the more compatible PMMA block phase. Nanostructured thermoset systems were successfully synthesized for self‐assembled amphiphilic block copolymer–epoxy/amine mixtures for copolymer contents lower than 40 wt%. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
The electrical resistivity and mechanical properties of carbon black (CB)-filled polystyrene (PS)/styrene-butadiene block copolymer (SB) blends have been studied. Good electrical performance was achieved with pure SB and PS/SB blends indicating an inhomogeneity of these materials and the heterogeneous micro-dispersion of the CB particles. The percolation threshold of the filler inside SB or PS/SB blends is around 3.6 wt%, which is lower than that expected for incompatible PS/PBD blend. The addition of small amount CB decreases the elongation at break of PS/SB blends indicating some disturbance at the interface of these compatible material. Received: 28 July 1996/Revised version: 1 October 1996/Accepted: 3 October 1996  相似文献   

15.
The compatibilization of blends of poly(ethylene‐2,6‐naphthalate) (PEN) with polystyrene (PS), through the styrene‐glycidyl methacrylate copolymers (SG) containing various glycidyl methacrylate (GMA) contents, was investigated in this study. SG copolymers are able to react with PEN terminal groups during melt blending, resulting in the formation of desirable SG‐g‐PEN copolymers in the blend. These in situ formed copolymers tend to reside along the interface preferentially as the result of interfacial reaction and thus function as effective compatibilizers in PEN/PS blends. The compatibilized blends exhibit higher viscosity, finer phase domain, and improved mechanical properties. It is found that the degree of grafting of the in situ formed SG‐g‐PEN copolymer has to be considered as well. In blends compatibilized with the SG copolymer containing higher GMA content, heavily grafted copolymers would be produced. The length of the styrene segment in these heavily grafted copolymers would be too short to penetrate deep enough into the PS phase to form effective entanglements, resulting in the lower compatibilization efficiency in PEN/PS blends. Consequently, the in situ formation of SG‐g‐PEN copolymers with an optimal degree of grafting is the key to achieving the best performance for the eventually produced PEN/PS blends through SG copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 967–975, 2003  相似文献   

16.
High molecular weight aramid chains (Ar) were synthesized from aromatic diamine and diacid chloride. Amine functionality was introduced to polystyrene (PS) in two steps i.e., nitration followed by reduction producing amino functional polystyrene (APS) which serves as a reactive compatibilizer, being reactive with the Ar end‐groups. APS was characterized by FTIR, NMR spectral data, and exploited in the preparation of Ar/APS blends, and the effect of reactive compatibilization on blend morphology and interfacial adhesion was explored. Two blend systems Ar/PS and Ar/APS were investigated over a range of PS or APS ratios. To assess the effect of amine units incorporated in PS, on the compatibility with Ar; morphology, thermal, and mechanical properties were probed. Incorporation of reactivity into the system has resulted in significant refinement of the blend morphology and augmentation of thermal stability. The in situ generation of APS‐g‐Ar copolymers during solution mixing of APS and Ar was evaluated using spectroscopic analysis. In addition to stabilizing the microstructure, in situ compatibilization was found to alter the mechanical properties of the Ar/APS interface. Ar/APS blend containing 10 wt% APS was found to demonstrate optimum mechanical reinforcement as complemented by the optimal thermal and morphological profiles of 10 wt% Ar/APS blend. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
The development of the morphology and the alignment of lamellae in melt elongation of blends of an asymmetric linear styrene‐butadiene block copolymer (LN3) and polystyrene (PS 158K) was investigated. PS 158K and LN3 formed two‐phase polymer blends with PS 158K resp. LN3 inclusions, depending on the concentration of polystyrene. The block copolymer was arranged in a lamellar phase with a lamellae thickness of ~ 13 nm. Our rheological experiments revealed that the complex modulus, the elongational viscosity and the recovered stretch of the blends primarily resulted from a superposition of the properties of the blend components. In melt elongation, pure LN3 started to crumple at a small Hencky strain. In the blends, the presence of the PS 158K inclusions led to a macroscopically more uniform elongation, but with an anisotropic Poisson ratio. The LN3 inclusions in the PS 158K matrix were deformed into a filament‐like shape. In the blends with a LN3 matrix the alignment of the block copolymer lamellae parallel to the loading direction increased with applied extensional strain. In the latter case, the lamellae thickness did not decrease significantly. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The mechanical, morphological, and rheological properties of polymer blends based on polystyrene (PS) and three different types of polybutadiene (PB) were studied. The polymer blends containing 20% of PB were processed in a Haake mixer at 180°C and 60 rpm for 6 min. The materials exhibited impact strength superior to that of the PS. An increase was observed in the impact strength of 138, 208, and 823%, when low‐cis polybutadiene (PBl), high‐cis polybutadiene (PBh), and styrene–butadiene block copolymer (PBco), were respectively used. The materials presented dispersed morphology with polybutadiene domains, with sizes inferior to 1 μm, randomly distributed in the PS matrix. The viscous and storage moduli increased as the applied frequency increased. The flow activation energy, calculated by Arrhenius equation, varied from 34 to 71 kJ/mol. In the rheological experiments all polymer blends presented pseudoplastic behavior, showing decreasing viscosities as the shear rate increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

20.
Summary The glass transition behavior of ternary blends of polypropylene (PP), polystyrene (PS) and styrene-ethylene-propylene-styrene block copolymer (SEPS) was investigated. The blends were prepared by an internal mixer, and their dynamic mechanical properties and morphology were measured. The blends showed phase inversion at around 75wt% PS composition. The glass transition temperature (Tg) of the PP phase shifted to lower temperature as the PS contents were increased in PP/PS binary blends, probably due to the mismatch of thermal expansion coefficients between two components. As the SEPS copolymer contents were increased, the Tg's of the PP phase in the blends increased. In particular, the large increase in Tg of the PP phase was observed in the PP/PS (25/75) blends where the phase inversion takes place. Received: 2 February 1998/Revised version: 24 March 1998/Accepted: 13 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号