首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究高地温下水工隧洞开挖后锚杆轴力分布、不同时间和不同温度下围岩塑性区特征,以新疆某水电站引水隧洞高温洞段为研究对象,以现场监测的温度数据和锚杆轴力数据为基础,基于Dracker-Prager本构模型,采用有限元法对高地温水工隧洞施工期的温度-应力耦合场进行围岩塑性区模拟分析。结果表明,高地温水工隧洞中各锚杆轴力均为拉应力,随时间不断增大,曲线斜率逐渐减小,各锚杆轴力最大处位置有所不同,但各锚杆在第8 d后前端轴力增长明显减缓;随着时间的推移,围岩塑性区向上下扩展,且塑性区厚度增加,塑性应变值逐渐增大;围岩初始温度越高,开挖后洞壁与内部围岩的温差越大,温度应力对围岩塑性区的影响越大;围岩的温度越高,塑性区更容易在拱肩处向围岩深处恶化发展。  相似文献   

2.
为研究不同环境条件下水工隧洞围岩瞬态温度-应力耦合场的分布特性及变化规律,以新疆某寒区水工隧洞为依托,基于M-C本构模型,采用有限元仿真计算,对不同自然通风温度和不同风速下水工隧洞洞口及洞中位置围岩温度-应力耦合场进行系统分析。结果表明,隧洞洞中位置的温度高于洞口,自然通风时洞中位置产生的温差大于洞口位置;由温差产生的温度应力(拉应力)抵消了部分围岩压应力,洞中位置主应力受对流-导热影响大于洞口;通风时间增加,隧洞的塑性应变值及塑性区范围都增加,150 d时塑性应变值在洞口腰拱位置较大,为0.019,塑性区半径约为1倍洞径,厚度约为2.08 m;通风风速增加,隧洞主应力值及塑性应变值都减小,但变化幅度很小;通过150 d有无温度荷载条件对比得出,温度应力在腰拱位置最大,为0.16 MPa。  相似文献   

3.
白鹿塬洞段是引汉济渭二期工程黄土区隧洞中埋深最大、地下水位最高的隧洞工程,其盾构法施工的可行性与安全性尚不明确。为此,应用ABAQUS渗流-应力全耦合数值模拟方法,采用Mohr-Coulomb弹塑性本构模型与刚度迁移法,对白鹿塬282.22 m埋深泥岩洞段的盾构掘进过程进行了三维仿真,重点分析了隧洞掘进阶段典型断面围岩孔隙水压力、应力变形、塑性区以及衬砌结构受力变形的变化规律。结果表明:典型断面处孔隙水压力随开挖过程先降低后回升,随后趋于稳定,距离掌子面前缘约3.6 m的隧洞断面处产生体积收缩,从而造成超孔隙水压力,压力水头最大值约248.0 m;洞周收敛,顶拱下沉,底拱隆起,隧洞周围围岩应力、应变、径向变形呈对称性分布,等效塑性应变主要发生在洞侧3 m深度范围内,顶拱无明显的塑性区,故围岩的最可能破坏模式为侧拱围岩塌落;在施工阶段衬砌结构内外缘以压应力为主,最大压应力为18.77 MPa,衬砌顶拱、底拱外缘以及拱腰内缘边墙产生较小的拉应力,约为0.85 MPa,均满足抗压承载力和抗拉强度要求。研究结果可为引汉济渭二期工程的安全运营及灾害防治提供参考依据。  相似文献   

4.
《人民黄河》2015,(7):133-137
深埋引水隧洞在通过高地温区域时,伴随着开挖卸荷—通风降温—通水运行的全过程,隧洞围岩将经历反复的温度-应力耦合作用,使得围岩的变形破坏更为复杂。对齐热哈塔尔水电站深埋引水隧洞高地温洞段进行三维数值分析,详细研究了围岩在经历开挖、两次降温以及内水压力共同作用的全过程变形特征,比选了衬砌设计方案。结果表明:温度对围岩径向深度5 m范围内影响很大,此范围内围岩在经历反复温度-应力耦合作用后,不仅位移明显增大,而且可能会加重岩体损伤程度,但一定的内水压力有利于围岩稳定;施做二次衬砌能控制围岩变形,使原本隆起的拱脚变为下沉,但是仅通过增加二次衬砌厚度来抑制围岩变形和改善衬砌应力的作用是有限的。  相似文献   

5.
高地温热害不仅恶化了施工环境,在热-应力-蠕变作用下,还严重影响工程结构的安全稳定。以新疆某深埋高温引水隧洞为依托,对高温深埋引水隧洞施工过程热-应力-蠕变作用下围岩及衬砌的时效力学响应进行计算。研究结果表明,隧洞开挖后,轴向未开挖岩石在施工期的瞬态温度场扰动范围有限,温度场影响范围约为3 m深度,大约为1倍洞径。自洞口向掌子面,围岩温度逐渐升高,且呈现显著的非线性;在衬砌的作用下,围岩变形量有所减小,衬砌结构可使围岩蠕变变形降低16.91%;衬砌结构变形受开挖过程影响明显,长期的蠕变甚至可能使衬砌结构失效。研究成果可为高地温相关工程设计提供参考。  相似文献   

6.
高地温隧洞温度场三维数值模拟分析   总被引:1,自引:0,他引:1  
在高地温条件下,温度场是影响引水隧洞结构稳定的重要因素。为了研究不同工况下引水隧洞的温度场特性,以新疆布仑口—公格尔水电站高地温引水隧洞为依托,采用有限元仿真模拟的方法建立三维模型,对不同工况下高地温引水隧洞围岩及衬砌结构的稳态温度场特性进行了模拟计算,并取衬砌结构及围岩不同测点的温度场特性值进行对比分析。结果显示:受洞口及掌子面影响,围岩及衬砌温度随洞深增大可分为平缓段和骤升段两个阶段,且呈非线性变化。衬砌腰拱与顶拱内表面温差随洞深增大逐渐减小,且与工况有关,施工期最大值为1.26℃,运行期最大值为0.22℃。从模拟结果与实测结果的对比分析可知,实测与模拟所得围岩温度场分布特性相同。研究成果可为高地温引水隧洞热力耦合分析及其洞室稳定性提供了理论依据,同时也可为高地温区相关工程提供参考。  相似文献   

7.
针对新疆某高地温环境下的圆形隧洞,采用有限元分析程序,分别对不同围岩半径下的温度场分布进行模拟,并以不同围岩半径下围岩与支护接触面处的温度作为围岩合理计算范围取值的参考,结合有关理论分析的结果,确定出围岩最佳计算半径。在此基础上进一步研究隧洞施工期围岩温度、应力和位移场在热—应力耦合作用下的分布问题。研究结果表明,当围岩外部温度为80℃、隧洞内部温度为5℃时,隧洞开挖后考虑温度和应力共同影响下的围岩最佳计算半径为24 m。隧洞围岩温度沿围岩厚度方向呈非线性递增变化。与常温(20℃)情况相比,高地温的存在会使隧洞围岩最大主应力减小,同时也会在隧洞拱顶和底拱处产生拉应力。  相似文献   

8.
为研究水工隧洞在高地温复杂环境下喷层结构的受力特性,以新疆某高地温引水隧洞为依托,采用理论分析和数值模拟的方法,对高地温引水隧洞喷层结构的受力特性进行了研究,并分析了线膨胀系数、围岩不同深度温差以及地应力水平侧压力系数对隧洞喷层结构受力特性的影响。由计算结果可知:在高地温情况下,理论计算的径向压应力最大值为2.07 MPa,环向压应力最大值为35.37 MPa;数值模拟的径向压应力最大值为4.36 MPa,环向压应力最大值为34.37 MPa。通过对比发现:理论计算的径向位移最大值为1.2 mm,环向位移最大值为0.75 mm;数值模拟的径向位移最大值为2.1 mm,环向位移最大值为0.95 mm。数值模拟的结果表明:隧洞围岩喷层结构承受的应力随着线膨胀系数增加会增大;喷层的拱顶与拱底处承受的环向应力随着温差的增加会增大,喷层的拱腰处承受的环向应力随着温差的增加会减小;喷层结构承受的应力随着地应力水平侧压力系数的增加会增大。  相似文献   

9.
高温效应及其围岩节理结构特征对隧洞稳定的影响是高地温隧洞设计的关键问题。文章基于高地温隧洞现场温度及位移数据,分析高地温隧洞节理围岩温度变化特性。同时采用离散元方法模拟不同高温、不同节理结构特征隧洞围岩温度场、位移场规律及塑性区分布范围。结果表明:相对于完整围岩,节理围岩减少了隧洞围岩变温区的面积,并且节理倾角越靠近水平方向或竖直方向对温度场的影响越大。节理围岩在一定程度上可阻止变形位移量。热力耦合作用下节理围岩塑性区面积仅是地应力作用下塑性区面积的2倍左右,且节理倾角与竖直方向夹角越小,节理围岩的塑性区面积越大。当节理倾角为90°时,节理围岩的塑性区面积最大。  相似文献   

10.
王志鹏  张野  张高  刘曜 《红水河》2022,41(1):10-15
针对某水电站引水隧洞实际地质情况,采用离散单元法,深入研究了含节理岩体深埋引水隧洞初始应力、开挖锚喷支护及运行期工况下围岩应力分布情况及变形特点.研究成果表明:洞室开挖后顶拱及边墙部位顺节理方向变形突出,受围岩拱效应的影响底板出现较大位移,且局部存在应力集中现象;塑性区及锚杆拉应力呈明显不对称分布状态,节理对岩体整体稳...  相似文献   

11.
复杂地质条件是影响TBM输水隧洞结构安全的重要因素,以某引水工程中输水隧洞为研究对象,理论推导了渗流—应力全耦合作用的数学模型,针对TBM输水隧洞穿越断层和最大埋深段,建立三维有限元模型,计算分析围岩初始地应力场、渗流场,以及不同工况下围岩位移、塑性区和应力的分布规律,研究结果表明:初始地应力和孔隙水压力随着埋深的增加而增大,最大埋深处和断层处初始地应力分别达到1.342MPa、0.680MPa,孔隙水压力分别达到0.260MPa、0.200MPa;开挖过程中,断层和最大埋深段隧洞拱顶沉降量基本接近,相对差值仅为0.11%,而拱底抬升量差值较大,达到31.28%;断层处围岩塑性区主要出现在隧洞两侧,最大深度为2.920 m,最大埋深处围岩塑性区主要出现在隧洞拱顶,最大深度为8.627 mm;围岩最大压应力在断层和最大埋深段分别为7.987MPa、6.510MPa;内水压力作用,围岩位移和最大压应力相对于开挖阶段均有一定程度的降低。  相似文献   

12.
针对高地温环境下的水工隧洞,从平面空间角度出发,对不同方位路径、围岩深度、温度变化、地层深度、侧压力系数影响下的隧洞围岩应力变形特征进行研究.结果表明:隧洞开挖面处径向应力为零,离开挖面越远围岩径向应力就越大,隧洞开挖后围岩位移最大值位于拱顶处.围岩深部温度变化会对开挖面位移产生较大影响,对隧洞拱顶及洞底位移的影响尤其...  相似文献   

13.
在高地应力条件下选择合理的隧洞断面型式以及支护结构,对保证施工期围岩稳定及隧洞长期运行安全具有重要意义。针对滇中引水工程高地应力洞段,通过对比分析不同断面型式下隧洞围岩应力、变形及塑性区分布规律及量值大小,确定了隧洞断面型式为马蹄型,有利于隧洞围岩受力及结构稳定。在综合分析隧洞围岩的应力变形情况及塑性区深度的基础上,结合工程类比法确定了隧洞施工过程的临时支护措施及永久衬砌方案。通过对比支护前后隧洞围岩的变形数值及塑性区分布范围发现:临时支护措施能够有效的控制围岩的变形及减小围岩的塑性破坏范围,经永久衬砌后的隧洞围岩处于稳定状态,无明显的塑性破坏产生。  相似文献   

14.
袁木  肖明 《水力发电》2015,(3):24-28
以云南省滇中引水工程某段软岩引水隧洞建立实体模型,应用三维显式有限差分法程序FLAC3D对其施工开挖过程进行三维数值模拟。计算结果表明,软岩隧洞受到开挖面的空间约束效应,围岩应力逐步释放,相应围岩位移也逐渐增加;在横断面上,拱顶围岩沉降位移沿竖直径向的空间效应主要影响范围在3倍洞径(3D)左右,而拱腰围岩水平位移和拱底隆起位移在1.5D左右;掌子面向前推进过程中,掌子面的空间效应逐渐消失,拱顶、拱底位移在施工开挖面后方约2.5D~3D处趋于稳定,拱腰位移在约2D左右趋于稳定,围岩变形收敛:软岩隧洞需要及时施作初期支护,以提高围岩自承能力,限制位移的增长速度。  相似文献   

15.
隧洞开挖过程中穿越断裂破碎带时,由于岩体条件差,在施工方式扰动下普遍会引起围岩出现松动圈,甚至坍塌。为厘清隧洞开挖过程中围岩松动圈应力及变形变化规律,以哈密抽水蓄能电站通风兼安全洞为例,建立三维数值计算模型,采用有限差分法,分析了断裂破碎带围岩松动圈隧洞开挖支护过程中围岩径向应力、变形及塑性区变化规律。结果显示顶拱径向应力主要集中在松动圈前端,且下半层的开挖对其应力影响较小;隧洞上、下半层开挖对拱顶径向变形规律一致,均沿开挖深度呈抛物线型分布,且最大值均位于松动圈前端;开挖完成后,不同部位围岩的变形大小关系为拱顶 >边墙中心 >拱肩;围岩塑性区主要分布在边墙和底板周围,且均为剪切塑性破坏,因此施工过程中还需加强边墙和底板处的支护措施。研究成果可为断裂带围岩坍塌形成松动圈隧洞支护设计提供参考。  相似文献   

16.
超高地温条件下引水隧洞施工关键技术探讨   总被引:1,自引:0,他引:1  
娘拥水电站引水隧洞全长15 406 m,马蹄型断面。在1#支洞及该支洞下游主洞开挖过程中遭遇了高地温围岩,最高岩体温度高达86℃,高地温段洞室长度长达400 m。基于高地温隧洞施工实践,从降低洞内环境温度、钻爆开挖控制、初期支护措施等关键因素着手对高地温隧洞施工关键技术进行了探讨。  相似文献   

17.
布仑口水电站高温引水发电隧洞受力特性研究   总被引:3,自引:0,他引:3  
新疆布仑口-公格尔水电站位于西昆仑山腹地,在强烈的新老地质构造运动作用下引水发电隧洞前段存在高地温现象(实测温度105℃),严重影响隧洞施工和支护结构的耐久性。采用解析方法研究了该隧洞围岩和支护结构的温度分布规律和受力特性。首先采用瞬态和稳态两种方法研究温度分布规律,在此基础上研究了温度和应力耦合作用下围岩和支护结构的受力特性,最后初步设计了衬砌伸缩缝间距。研究表明低温冷水对围岩和支护结构的温度场影响显著,过水瞬时围岩内壁温度发生骤降(ΔT=60℃);运行期支护结构应力近似呈线性分布,而围岩应力却表现出明显的非线性特性。  相似文献   

18.
研究高温隧洞在温度稳定时,达到热平衡条件下的温度场及其引起的温度应力与隧洞自重应力的耦合分布形式。通过应用弹性力学中无限长圆筒对称温度应力的解析解与有限差分软件对温度场的分析,得出温度场及隧洞径向应力σρ、环向应力σφ和轴向应力σz的分布形式,表明在变温区,径向应力σρ呈先增大后减小趋势,环向应力σφ沿着洞径方向由拉应力变化为压应力,轴向应力σz沿着洞径方向为压应力增大。模拟温度应力与自重应力耦合作用下在隧洞水平边墙和洞室顶部的应力分布规律。表明在两个不同位置处的耦合应力分布明显不同,环向应力σφ在水平边墙处为压应力,且逐渐增大后趋于稳定,而在隧洞顶拱处为拉应力,逐渐变为稳定温度区的压应力。隧洞洞顶拱处的混凝土衬砌在耦合应力作用下处于拉应力状态,在环向拉应力作用下极易产生裂缝。更多还原  相似文献   

19.
为研究高地温引水隧洞支护结构的受力特性,利用有限元数值模拟对现场监测成果进行了分析论证。结果表明,施工期由于温度差异,最大拉压应力量值均较小,最大拉、压应力分别在0.67、0.45 MPa左右;运行期由于过水温度较低,全断面产生拉应力,最大拉应力在3.5 MPa左右;检修期由于隧洞排水,温度回升,由运行期的拉应力开始逐渐转化为压应力,最大压应力在0.35 MPa左右。  相似文献   

20.
刘泓蔚  孟尧  姜海波 《人民长江》2023,(10):135-140
寒区水工隧洞在通风条件下产生的温度变化会影响衬砌结构力学性能,进而影响水工隧洞的安全运行。以新疆布伦口水电站水工隧洞为依托,基于现场监测数据,采用有限元法对在不同风温、风速下隧洞不同深度处衬砌结构的热学、力学耦合特性进行深入分析。结果表明:不同风温下水工隧洞洞口衬砌温度低于洞内衬砌温度,洞口衬砌温度变化幅度大于洞内衬砌温度变化幅度;随着通风时间增加,一次衬砌与二次衬砌压应力均先减小后增大,最大压应力均位于拱腰处;不同风速下一次衬砌与二次衬砌最大温差为8.40℃,沿水工隧洞轴向与径向距离的增加,温度逐渐升高,风速、风温影响逐渐减小,最大温度拉应力位于拱腰,一次衬砌为0.12 MPa,二次衬砌为0.32 MPa;在不同风温和不同风速下,一次衬砌与二次衬砌位移均呈水平收缩、竖直隆起趋势。研究成果可为寒区水工隧洞衬砌优化设计提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号