首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Enhancement of the hydrophilicity in polymeric membrane materials results in membranes with higher flux and better membrane characteristics. Hence, polysulfone was carboxylated and ultrafiltration membranes were prepared from blends of cellulose acetate and carboxylated polysulfones having various degrees of carboxylation with a total polymer concentration of 20 wt % in casting solution and at different blend polymer compositions. The effects of degree of carboxylation on membrane characteristics such as compaction, pure water flux, and membrane hydraulic resistance (Rm) have been investigated. The influence of the polymer concentration in the blend solution on the performance of blend membranes at various blend polymer compositions has also been investigated and compared with that of blend membranes prepared from blends of cellulose acetate and polysulfone or carboxylated polysulfone with a total polymer concentration of 17.5 wt %. Further, the solute rejection performance of the membranes has also been investigated by subjecting the membranes to metal ion permeation studies using polyelectrolyte‐enhanced ultrafiltration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 976–988, 2005  相似文献   

2.
Modification of polymeric membrane materials by incorporation of hydrophilicity results in membranes with low fouling behavior and high flux. Hence, Polysulfone was functionalized by sulfonation and ultrafiltration membranes were prepared based on sulfonated polysulfone and cellulose acetate in various blend compositions. Polyethyleneglycol 600 was employed as a nonsolvent additive in various concentrations to the casting solution to improve the ultrafiltration performance of the resulting membranes. The total polymer concentration, cellulose acetate, and sulfonated polysulfone polymer blend composition, additive concentration, and its compatibility with polymer blends were optimized. The membranes prepared were characterized in terms of compaction, pure water flux, membrane resistance, and water content. The compaction takes place within 3–4 h for all the membranes. The pure water flux is determined largely by the composition of sulfonated polysulfone and concentration of additive. Membrane resistance is inversely proportional to pure water flux, and water content is proportional to pure water flux for all the membranes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1749–1761, 2002  相似文献   

3.
《分离科学与技术》2012,47(2):398-421
Abstract

Ultrafiltration membranes are largely being applied for heavy metal ion separations from aqueous streams. Cellulose acetate (CA) and aminated polysulfone (APSf) based membranes are prepared in the absence and presence of the polymeric additive, polyethylene glycol, PEG 600, in various compositions. The effects of polymer blend composition and additive concentration on compaction, pure water flux, membrane hydraulic resistance, water uptake, and contact angle has been investigated to evaluate the performance of the membranes and the results are discussed. Surface and cross-sectional morphologies of membranes were also analyzed using scanning electron microscopy. Toxic heavy metal ions such as Cu2+, Ni2+, Cd2+, and Zn2+ were separated by the blend membranes using polyethyleneimine (PEI) as polymeric ligand. The rejection and permeate flux efficiencies of the blend membranes are compared with pure cellulose acetate membranes.  相似文献   

4.
The determination of the pore size, porosity, number of pores, molecular weight cutoff (MWCO), and morphology of an ultrafiltration membrane is necessary for predicting the performance of a membrane for a specific application. For ultrafiltration membranes prepared from cellulose acetate and sulfonated polysulfone in the presence and absence of various concentrations of the additive poly(ethylene glycol) 600, pore statistics and MWCOs were determined in studies with dextrans of different molecular weights. Surface and cross‐sectional morphologies of the membranes were analyzed with scanning electron microscopy at different magnifications. The pore size increased with increasing concentrations of sulfonated polysulfone and additive in the casting solution. Similarly, the MWCOs of the membranes ranged from 19 to 150 kDa, depending on the various polymer blend compositions and additive concentrations. Results from scanning electron microscopy provided qualitative evidence for the trends observed for the pore statistics and MWCO results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 430–444, 2002; DOI 10.1002/app.10414  相似文献   

5.
抗污染超滤膜的研制   总被引:10,自引:2,他引:10  
本文研制了氯甲基化/季铵化聚砜与聚偏氟乙烯共混超滤膜用于阴极电泳漆超滤系统。首先优化了氯甲基化/季铵化聚砜超滤膜的制备工艺,在此基础上,用聚偏氟乙烯部分代替氯甲基化聚砜制备共混超滤膜。结果表明:氯甲基化/季铵化聚砜与聚偏氟乙烯共混超滤膜不仅具有优良的分离性能,而且改善了膜的抗污染性。  相似文献   

6.
Ultrafiltration techniques have particular advantages for simultaneous purification, concentration and fractionation of macromolecules. Studies are presented on novel ultrafiltration membranes, based on cellulose acetate and polysulfone blends, for the separation of proteins and heavy metal ions. The effects of polymer composition on pure water flux, water content, molecular weight cut‐off and hydraulic resistance are discussed. Scanning electron microscopy images of the membranes show the presence of segregated individual domains of cellulose acetate and polysulfone. The molecular weight cut‐off obtained from the protein separation studies is also presented. Applications of these membranes for separating metal ions from aqueous streams are discussed. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
The asymmetric aluminum ion exchange polysulfone membranes have successfully been prepared for the dehydration of ethanol‐water mixture. The relationship between the membrane morphology, separation performance, and the ion content of membranes were discussed in this study. The experimental results showed that the separation performance of those membranes was increased upon increasing the degree of aluminum ion exchange in polysulfone membranes. Both permeation rate and separation factors of those membranes increased with increasing the degree of ion exchange. The increase in separation performance of aluminum ion exchange membranes was mainly attributed to ion crosslinking in polymer network and the hydration effects of exchanged ion in membranes. On the other hand, the operating temperature in the PV process showed a significant influence on the dehydration of water molecules in the permeate. An increase in temperature increased the permeation flux of permeate but slightly decreased its selectivity. The aluminum asymmetric ions in membranes showed a strong influence on permselectivity of asymmetric ion exchange membranes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
For the separation of methyl tert-butyl ether (MTBE) and methanol mixtures, we investigated the pervaporation performance of a blend membrane made from cellulose acetate and cellulose acetate hydrogen phthalate. At first the influence of the blend composition was studied with a certain feed mixture. We found that all the tested membranes permeate methanol preferentially. The selectivity increases and the permeation rate decreases with increasing cellulose acetate content in the blend. Therefore, an optimal blend composition of 30 wt % in cellulose acetate was chosen to evaluate the influence of the feed composition and the experimental temperature on the pervaporation performance. When the feed temperature or the methanol content in the feed increases, the permeation rates are greatly enhanced and the selectivity decreases. However, the temperature effect is more significant at low methanol content in the feed and becomes negligible at high methanol content in the feed where plasticity effects prevail. A comparison, carried out with all the membranes until now used for the separation of MTBE/methanol mixtures, showed that the blended membrane studied in this present work presents good permselective properties. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 875–882, 1997  相似文献   

9.
In this study, we discuss the preparations of cellulosic membranes from cellulose acetate (CA), cellulose triacetate (CTA) and cellulose acetate blend (CAB) [blending of CA and CTA] systems and their potential for concentration of simulated ammonium-diuranate (ADU) effluent solution (only uranium and ammonium nitrate) by FO. The membranes are prepared using casting solution of polymers in mixed solvent systems with gelling in ice-cold water followed by annealing in 80°C hot water. Prepared membranes are characterized in terms of separation performance (tested under brackish water reverse osmosis test condition), water contact angle and surface average roughness. The performance of the membranes are evaluated in terms of volume reduction factor using solution of 40,000 ppm of NH4NO3 and 20 ppm uranium as feed and 320000ppm of NH4NO3 as draw solution. It is found that the volume reduction factor increases in the order of CTA<CAB<CA membranes. The effect of different draw solutions on volume reduction for the same system using CA membrane is also evaluated. Almost no leaching of uranium is found to the draw solution side for all the membranes. Possibility of using the FO process in a simpler way (as membrane pouch) to concentrate this simulated ADU filtered solution has been ascertained.  相似文献   

10.
Based on the hydrophilicity and biodegradability of cellulose acetate (CA), polyvinyl chloride (PVC)/CA blend membrane was prepared by solution comixing and phase transformation method. Then the CA in the blend membrane was partially hydrolyzed under acidic conditions to improve the hydrophilicity of the blend membrane, so as to improve the filtration performance of the PVC/CA blend membrane. The properties of the membranes were systematically characterized by Fourier transform infrared spectroscopy, differential scanning calorimeter, and scanning electron microscopy (SEM). The porosity, water contact angle, pure water flux (PWF), protein retention rate, and mechanical properties of the membrane were measured, and the effect of hydrolysis on the filtration performance of the blend membrane was analyzed. The results showed that the hydrophilicity and porosity of the blend membrane increased, the PWF and protein rejection rate enhanced after acid catalyzed hydrolysis, while the mechanical properties of PVC membrane were maintained. This simple preparation method endows PVC/CA blend membrane with desirable filtration performance, and also helps to overcome the disadvantages of poor hydrophilicity and easy pollution of pure PVC membrane.  相似文献   

11.
Asymmetric micro porous membranes have been prepared successfully from blending of cellulose acetate (CA) and polyethersulfone (PES) by the phase inversion method with N, N-dimethylformamide (DMF) as solvent. Two additives were selected in this study, including polyethylene glycol 600 (PEG 600) and polyvinylpyrrolidone (PVP). The effects of concentration of additives on CA/PES blend membrane performance and cross-section morphology were investigated in detail. CA/PES membranes were compared with CA/PES/PEG and CA/PES/PVP membranes in the performance such as pure water flux, membrane resistance, porosity and cross-section morphology. The resulting blend membranes were also carried out the rejection and permeate flux of Egg Albumin (EA) proteins with molecular weight of 45 Da. The membranes thus obtained with an additive concentration of 5 wt% of both PEG and PVP exhibited superior properties than the 80/20% blend composition of CA and PES membranes. The permeate flux of protein was increased from 44 to 134 lm2 h with increase in concentrations of both PVP and PEG in 80/20% blend composition of CA and PES membranes. Cross-sectional images from scanning electron microscopy showed larger macropores in the bottom layer of the membranes with increasing additives content. Observations from scanning electron microscopy provided qualitative evidence for the trends obtained for permeability and porosity results.  相似文献   

12.
The permeation characteristics of nylon-12-cellulose acetate polymer blend membranes in the separation of polymers, poly(vinyl alcohols), from their aqueous solutions were investigated under various conditions. The permeation characteristics were influenced markedly by the ratio of nylon-12-cellulose acetate, the feed concentration, the operating pressure and temperature. It was found that the changes of polymer ratio and the concentration of blended polymer were related to the change of microporous structure of the resulting membranes. When the cellulose acetate content was higher a significant compaction of the membrane occurred under pressure. It was found that there was a concentration polarization of poly(vinyl alcohol) molecules on the membrane surface, whose thickness increased with increase in molecular weight of poly(vinyl alcohol) and in feed concentration. The bursting strength of the polymer blend membranes swollen with water increased considerably as the cellulose acetate content in the blended polymer increased.  相似文献   

13.
Composite reverse osmosis membranes of ionically crosslinked poly(acrylic acid) (PAA) have been prepared. The process consists of coating a porous polysulfone membrane with a thin layer of dilute solution of PAA, drying the thin liquid layer, and ionically crosslinking the PAA in solutions of different salts. The influence of some important preparation parameters on the properties of these membranes was investigated. It was found that all these membranes possessed ion exchange properties and could be ion exchanged; some of them have been found to be suitable for the desalination of low concentration salt solutions. By comparison to cellulose acetate (CA) membranes, higher rejection of phenols may be an interesting property of these membranes.  相似文献   

14.
Membranes were made from miscible blends of polysulfone (PSf) and carboxylated polysulfone (CPSf) having an average of 0.45 and 0.87 ? COOH groups per repeated unit. Membranes made from PSf and CPSf alone showed low separation for NaCl, glucose, polyethylene glycol (PEG) of various molecular weights and bovine albumin, from aqueous solutions under an applied pressure of 50 psig and higher. Membranes made from PSf/CPSf of varied blend composition showed higher separation factors for the above solutes. Highest separation was observed in membranes made from an 80/20 wt% PSf/CPSf 0.45 blend, which yielded a separation factor of 0.60 for NaCl, 0.97 for glucose, 0.98 for PEG and 0.99 for bovine albumin under an applied pressure in the range 50–150 psig. This higher performance is believed to be a result of a synergism between PSf and CPSf 0.45 to give a membrane morphology unique among the PSf/CPSf membranes.  相似文献   

15.
The development of cellulose acetate blend membranes using a commercial grade Mycell cellulose acetate and cellulose diacetate with suitable pore structure is discussed. These membranes were characterized in terms of resistance of the membrane, pure water flux, the molecular weight cutoff, water content, pore size, and porosity. The removal of copper metal ions by this blend membrane using polyethyleneimine as a chelating agent was studied. The effects of copper ion concentration and casting solution composition on separation are also discussed. A possible correlation between feed and permeate concentration of copper ion is evaluated. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1939–1946, 1998  相似文献   

16.
A novel phthalimidomethyl polysulfone (PIPSf)/polysulfone(PSf) blend affinity membrane was prepared and applied for the removal of p‐nitrophenol from aqueous solutions. In this work, the chloromethylated polysulfone (CMPSf) was used to introduce phthalimido groups onto the polysulfone backbone by Gabriel reaction. The polymers can be easy to phthalimidomethylate to different degrees by control of the reaction temperature and time. Structures of the resulting polymers were confirmed by FT‐IR. The obtained polymers showed good solubility in dimethylformamide, dimethylacetamide and formed the affinity membrane blending with polysulfone at different blend compositions by the phase‐inversion method. Thus the properties of films were characterized with respect to water flux, pore size, and porosity. The surface and cross‐sectional views of the blend membranes were analyzed by scanning electron microscopy (SEM). The research on treatment of removal p‐nitrophenol was carried out by affinity membrane process. The adsorption capacity increased with increasing the initial concentration of p‐nitrophenol in aqueous solution, and the adsorption isotherm fitted the Freundlichmodel well. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The effects of drying condition on the performance (ultrafiltration rate, diffusive solute permeability, and sieving) of hemodialysis membranes prepared from cellulose/N‐methylmorpholine‐N‐oxide (NMMO) solution (NMMO membrane) and cellulose/cuprammonium solution (cuprammonium membrane; the referential membrane) were studied. The drying condition investigated was the glycerin concentration of the solution, which was used to substitute glycerin for the water in the membrane before the membrane was dried. A lower glycerin concentration in the solution brought about a lower reswelling degree (water content) in the dried membrane in pure water, which resulted in a drop in the performance of the as‐cast membrane. The NMMO membrane had a high water content and a high membrane performance compared with the cuprammonium membrane when both the membranes were treated under the same drying condition. The differences in the performance between both membrane series is discussed on the basis of the results of the observation of the membrane morphology by scanning electron microscopy, the observation of the crystallinity of the membranes by wide‐angle X‐ray diffraction, and the estimation of the pore structure of the membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1671–1681, 2003  相似文献   

18.
Cellulose acetate reverse osmosis membranes, 600–2800 A. thick, have been prepared on glass surfaces by dipping a clean glass plate into a dilute solution of cellulose acetate. After drying, the membranes are floated of onto a water surface and placed on molecular filter supports. Theoretical salt rejections, as calculated from the solution-diffusion model of membrane transport for cellulose acetate, were obtained with imperfection-free membranes.  相似文献   

19.
Physical and chemical modifications of polymeric ultrafiltration membranes are necessary to improve their hydrophilic properties, strength, and other characteristics. Microcrystalline cellulose (MCC) was prepared from cellulose pulp by acid‐catalyzed hydrolysis in the presence of ultrasonic radiation, and the properties of MCC were evaluated. Through the addition of MCC to a polysulfone (PS) membrane solution, a casting solution of a PS/MCC blend was obtained. Subsequently, the ultrafiltration membrane from the blend was further developed in a phase‐inversion process comprising immersion and deposition. The capacity for ultrafiltration was better with increasing MCC content. When the ratio of MCC to PS was 0.3, the pure water flux of the composite membrane reached 234.2 L/m2/h, and the retention of a bovine serum albumin solution (1 g/L) was as high as 93.4%. The membranes were also observed with scanning electron microscopy and atomic force microscopy to study their microstructures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
用于脱除C5及MTBE中甲醇的渗透汽化膜研究   总被引:1,自引:0,他引:1       下载免费PDF全文
Several pervaporation membranes, cellulose acetate (CA), polyvinylbutyral (PVB), poly(MMA-co-AA),MMA-AA-BA, CA/PVB blend and CA/poly(MMA-co-AA) blend, were prepared, and their pervaporation properties were evaluated by separation of methanol/C5 or methanol/MTBE (methyl tert-butyl ether). The results shows that the CA composite membrane has a high separation performance (flux Jmethanol = 350 g.m-2.h-1 and separation factor α>400) for methanol/C5 mixtures, and the pervaporation characteristics of MMA-AA-BA copolymer membranes changes with the ratio of copolymer. For CA/poly(MMA-co-AA) blend membrane, the pervaporation performance is improved in comparison with CA or poly(MMA-co-AA) membrane. From the experiment of CA/PVB blend membranes for methanol/MTBE mixture, it is found that the compatibility of blends may affect the separation features of blend membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号