首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper presents a development of the boundary contour method (BCM) for piezoelectric media. Firstly, the divergence-free of the integrand of the piezoelectric boundary element method is proved. Secondly, the boundary contour method formulations are obtained by introducing quadratic shape functions and Green's functions (Computer Methods in Applied Mechanics and Engineering1998;158: 65-80) for piezoelectric media and using the rigid body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the problem of piezoelectric media. Finally, numerical solutions for illustrative examples are compared with exact ones. The numerical results of the BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified.  相似文献   

2.
This paper presents a development of the boundary contour method (BCM) for magneto-electro-elastic media. Firstly, the divergence-free of the integrand of the magneto- electro-elastic boundary element is proved. Secondly, the boundary contour method formulations are obtained by introducing linear shape functions and Green's functions (Computers & Structures, 82(2004):1599-1607) for magneto-electro-elastic media and using the rigid body motion solution to regularize the BCM and avoid computation of the corner tensor. The BCM is applied to the problem of magneto-electro-elastic media. Finally, numerical solutions for illustrative examples are compared with exact ones and those of the conventional boundary element method (BEM). The numerical results of the BCM coincide very well with the exact solution, and the feasibility and efficiency of the method are verified.  相似文献   

3.
 A variant of the boundary element method, called the boundary contour method (BCM), offers a further reduction in dimensionality. Consequently, boundary contour analysis of two-dimensional (2-D) problems does not require any numerical integration at all. While the method has enjoyed many successful applications in linear elasticity, the above advantage has not been exploited for Stokes flow problems and incompressible media. In order to extend the BCM to these materials, this paper presents a development of the method based on the equations of Stokes flow and its 2-D kernel tensors. Potential functions are derived for quadratic boundary elements. Numerical solutions for some well-known examples are compared with the analytical ones to validate the development. Received 28 August 2001 / Accepted 15 January 2002  相似文献   

4.
A variant of the usual boundary element method (BEM), called the boundary contour method (BCM), has been presented in the literature in recent years. In the BCM in three dimensions, surface integrals on boundary elements of the usual BEM are transformed, through an application of Stokes’ theorem, into line integrals on the bounding contours of these elements. The BCM employs global shape functions with the weights, in the linear combinations of these shape functions, being defined piecewise on boundary elements. A very useful consequence of this approach is that stresses, at suitable points on the boundary of a body, can be easily obtained from a post-processing step of the standard BCM. The subject of this paper is shape optimization in three-dimensional (3D) linear elasticity by the BCM. This is achieved by coupling a 3D BCM code with a mathematical programming code based on the successive quadratic programming (SQP) algorithm. Numerical results are presented for several interesting illustrative examples.  相似文献   

5.
An accelerated boundary cloud method (BCM) for boundary‐only analysis of 3D electrostatic problems is presented here. BCM uses scattered points unlike the classical boundary element method (BEM) which uses boundary elements to discretize the surface of the conductors. BCM combines the weighted least‐squares approach for the construction of approximation functions with a boundary integral formulation for the governing equations. A linear base interpolating polynomial that can vary from cloud to cloud is employed. The boundary integrals are computed by using a cell structure and different schemes have been used to evaluate the weakly singular and non‐singular integrals. A singular value decomposition (SVD) based acceleration technique is employed to solve the dense linear system of equations arising in BCM. The performance of BCM is compared with BEM for several 3D examples. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The Boundary Contour Method (BCM) is a recent variant of the Boundary Element Method (BEM) resting on the use of boundary approximations which a-priori satisfy the field equations. For two-dimensional problems, the evaluation of all the line-integrals involved in the collocation BCM reduces to function evaluations at the end-points of each element, thus completely avoiding numerical integrations. With reference to 2-D linear elasticity, this paper develops a variational version of BCM by transferring to the BCM context the ingredients which characterize the Galerkin-Symmetric BEM (GSBEM). The method proposed herein requires no numerical integrations: all the needed double line-integrals over boundary elements pairs can be evaluated by generating appropriate “potential functions” (in closed form) and computing their values at the element end-points. This holds for straight as well as curved elements; however the coefficient matrix of the equation system in the boundary unknowns turns out to be fully symmetric only when all the elements are straight. The numerical results obtained for some benchmark problems, for which analytical solutions are available, validate the proposed formulation and the corresponding solution procedure.  相似文献   

7.
Summary This paper presents a novel method called the Hypersingular Boundary Contour Method (HBCM) for two-dimensional (2-D) linear elastostatics. This new method can be considered to be a variant of the standard Boundary Element Method (BEM) and the Boundary Contour Method (BCM) because: (a) a regularized form of the hypersingular boundary integral equation (HBIE) is employed as the starting point, and (b) the above regularized form is then converted to a boundary contour version based on the divergence free property of its integrand. Therefore, as in the 2-D BCM, numerical integrations are totally eliminated in the 2-D HBCM. Furthermore, the regularized HBIE can be collocated at any boundary point on a body where stresses are physically continuous. A full theoretical development for this new method is addressed in the present work. Selected examples are also included and the numerical results obtained are uniformly accurate.  相似文献   

8.
Static fracture analyses in two‐dimensional linear magnetoelectroelastic (MEE) solids is studied by means of the extended finite element method (X‐FEM). In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and the crack‐tip asymptotic functions to the standard finite element approximation using the framework of partition of unity. In this study, media possessing fully coupled piezoelectric, piezomagnetic and magnetoelectric effects are considered. New enrichment functions for cracks in transversely isotropic MEE materials are derived, and the computation of fracture parameters using the domain form of the contour interaction integral is presented. The convergence rates in energy for topological and geometric enrichments are studied. Excellent accuracy of the proposed formulation is demonstrated on benchmark crack problems through comparisons with both analytical solutions and numerical results obtained by the dual boundary element method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a further development of the Boundary Contour Method (BCM) for two-dimensional linear elasticity. The new developments are: (a) explicit use of the rigid body motion solution to regularize the BCM and avoid computation of the corner tensor, (b) quadratic boundary elements compared to linear elements in previous work and (c) evaluation of stresses both inside and on the boundary of a body. This method allows boundary stress computations at regular points (i.e. at points where the boundary is locally smooth) inside boundary elements without the need of any special algorithms for the numerical evaluation of hypersingular integrals. Numerical solutions for illustrative examples are compared with analytical ones. The numerical results are uniformly accurate.  相似文献   

10.
This paper presents an innovative approach for analysing plane strain metal forming processes. The proposed approach is based on the rigid-plastic boundary element method for slightly compressible material models.The main advantage of the rigid-plastic boundary element method over existing numerical simulation methods is the necessity of requiring the unknowns to be mainly set at the contour of the workpiece, simplifying the analysis and offering additional computational advantages.A numerical example consisting of the frictionless upsetting of rectangular slabs between flat anvils under plane strain conditions is included to show the applicability of the proposed approach. Assessment with the analytically exact solution is made in terms of geometry, pressure and distribution of strain and stress inside the workpiece.  相似文献   

11.
Recently very promising results in a so-called hp-version of the finite element method have been obtained. The basic idea is a balanced combination of mesh refinement and increase of the polynomial degree of the shape functions. This idea is applied to a boundary collocation method in this paper. The new method is compared with adaptive h- and p-versions and it is shown in numerical examples that even in the presence of singularities in the exact solution exponential convergence is obtained.  相似文献   

12.
An improved boundary element formulation (BEM) for two-dimensional non-homogeneous biharmonic analysis of rectilinear plates is presented. A boundary element formulation is developed from a coupled set of Poisson-type boundary integral equations derived from the governing non-homogeneous biharmonic equation. Emphasis is given to the development of exact expressions for the piecewise rectilinear boundary integration of the fundamental solution and its derivatives over several types of isoparametric elements. Incorporation of the explicit form of the integrations into the boundary element formulation improves the computational accuracy of the solution by substantially eliminating the error introduced by numerical quadrature, particularly those errors encountered near singularities. In addition, the single iterative nature of the exact calculations reduces the time necessary to compile the boundary system matrices and also provides a more rapid evaluation of internal point values than do formulations using regular numerical quadrature techniques. The evaluation of the domain integrations associated with biharmonic forms of the non-homogeneous terms of the governing equation are transformed to an equivalent set of boundary integrals. Transformations of this type are introduced to avoid the difficulties of domain integration. The resulting set of boundary integrals describing the domain contribution is generally evaluated numerically; however, some exact expressions for several commonly encountered non-homogeneous terms are used. Several numerical solutions of the deflection of rectilinear plates using the boundary element method (BEM) are presented and compared to existing numerical or exact solutions.  相似文献   

13.
In this paper, we present a boundary element method (BEM) solution technique for studying the three-dimensional transversely-isotropic piezoelectric half-space problems. The use of mixed alternative point force solutions for half and full-space problems presented are necessary to overcome the computation difficulties especially in the calculation of the derivatives with respect to z. Infinite boundary elements are introduced to model the surface of the half-space only when stresses at the internal points are required to be evaluated. The integration over the infinite boundary elements is bounded and some limitations of the infinite element construction are relaxed. Closed-form solutions for uniformly distributed mechanical and electrical loads acting on a circular area on the surface of half-space are derived. This theoretical work serves as a good verification tool for numerical computation. In this paper, the numerical and theoretical results show good agreement. Numerical analysis via the finite element method (FEM) is also carried out using the commercial solver ANSYS. These FEM results are used to verify against the accuracy of the BEM solution. Finally, numerical results for the case of Hertzian pressure applied to an imperfect half-space are presented. The effects of the coupled mechanical–electrical influences as well as the presence of voids are examined. This work was supported by NTU Academic Research Funds. The finite element simulation using the ANSYS code was conducted by Mr. Ji Ren. Also, the authors wish to acknowledge the journal editor and anonymous reviewers for their helpful suggestions and comments leading to improvement of the paper.  相似文献   

14.
In this paper, two alternative approaches to the boundary element method (BEM) are investigated; namely, the contour approach method and the direct approach method. A detailed comparison of these methods is made by evaluating the accuracy of singular boundary integrals. A complete and comprehensive exposition of the derivation leads to the correct implementation. This is in contrast to conventional numerical integration methods, which suffer from the numerical boundary layer. Singularities which are mathematical artifacts are shown to vanish when the contour approach and the direct approach methods are applied. Singularities which arise from the physics are dealt with by way of a complex mapping method in the BEM. The results of seven benchmark problems which are supportive of these conclusions are presented at the end of this article.  相似文献   

15.
This paper presents a virtual boundary element—integral collocation method (VBEM) for the plane magnetoelectroelastic solids, which is based on the basic idea of the virtual boundary element method for elasticity and the fundamental solutions of the plane magnetoelectroelastic solids. Besides sharing all the advantages of the conventional boundary element method (BEM) over domain discretization methods, it avoids the computation of singular integral on the boundary by introducing the virtual boundary. In the end, several numerical examples are performed to demonstrate the performance of this method, and the results show that they agree well with the exact solutions. The method is one of the efficient numerical methods used to analyze megnatoelectroelastic solids.  相似文献   

16.
This paper concerns the dual boundary contour method for solving two-dimensional crack problems. The formulation of the dual boundary contour method is presented. The crack surface is modeled by using continuous quadratic boundary elements. The traction boundary contour equation is applied for traction nodes on one of the crack surfaces and the displacement boundary contour equation is applied for displacement nodes on the opposite crack surface and noncrack boundaries. The direct calculation of the singular integrals arising in displacement BIEs is addressed. These singular integrals are accurately evaluated with potential functions. The singularity subtraction technique for determining the stress intensity factor KI, KII and the T-term are developed for mixed mode conditions. Some two-dimensional examples are presented and numerical results obtained by this approach are in very good agreement with the results of the previous papers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The scaled boundary finite element method is a novel semi‐analytical technique, whose versatility, accuracy and efficiency are not only equal to, but potentially better than the finite element method and the boundary element method for certain problems. This paper investigates the possibility of using higher‐order polynomial functions for the shape functions. Two techniques for generating the higher‐order shape functions are investigated. In the first, the spectral element approach is used with Lagrange interpolation functions. In the second, hierarchical polynomial shape functions are employed to add new degrees of freedom into the domain without changing the existing ones, as in the p‐version of the finite element method. To check the accuracy of the proposed procedures, a plane strain problem for which an exact solution is available is employed. A more complex example involving three scaled boundary subdomains is also addressed. The rates of convergence of these examples under p‐refinement are compared with the corresponding rates of convergence achieved when uniform h‐refinement is used, allowing direct comparison of the computational cost of the two approaches. The results show that it is advantageous to use higher‐order elements, and that higher rates of convergence can be obtained using p‐refinement instead of h‐refinement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a further development of the boundary contour method. The boundary contour method is extended to cover the traction boundary integral equation. A traction boundary contour method is proposed for linear elastostatics. The formulation of traction boundary contour method is regular for points except the ends of the boundary element and corners. The present approach only requires line integrals for three‐dimensional problems and function evaluations at the ends of boundary elements for two‐dimensional cases. The implementation of the traction boundary contour method with quadratic boundary elements is presented for two‐dimensional problems. Numerical results are given for some two‐dimensional examples, and these are compared with analytical solutions. This method is shown to give excellent results for illustrative examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers a 2‐D fracture analysis of anisotropic piezoelectric solids by a boundary element‐free method. A traction boundary integral equation (BIE) that only involves the singular terms of order 1/r is first derived using integration by parts. New variables, namely, the tangential derivative of the extended displacement (the extended displacement density) for the general boundary and the tangential derivative of the extended crack opening displacement (the extended displacement dislocation density), are introduced to the equation so that solution to curved crack problems is possible. This resulted equation can be directly applied to general boundary and crack surface, and no separate treatments are necessary for the upper and lower surfaces of the crack. The extended displacement dislocation densities on the crack surface are expressed as the product of the characteristic terms and unknown weight functions, and the unknown weight functions are modelled using the moving least‐squares (MLS) approximation. The numerical scheme of the boundary element‐free method is established, and an effective numerical procedure is adopted to evaluate the singular integrals. The extended ‘stress intensity factors’ (SIFs) are computed for some selected example problems that contain straight or curved cracks, and good numerical results are obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The generalized boundary element method is presented for the numerical solution of Burgers' equation. The new method is based on the set of boundary integral equations derived for each subdomain by using the fundamental solution for the linearized differential operator of the equation. The resulting system of quasi-non-linear equations is solved implicitly with use of a simple iterative procedure. The adaptability and the accuracy of the proposed method are demonstrated by three examples and a comparison of the numerical results with the exact solution or other existing solutions is shown for the first example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号