首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigated in the present study are the physical properties, morphology, and structure of PP/N6 alloy filaments (10, 20 wt % N6) made with or without PP‐g‐MAH as compatibilizer. The alloy filaments produced at the take‐up speeds of 300 and 800 m/min were drawn with draw ratio of 3.5 and 2, respectively. Stress–strain curves of PP and alloy filaments show ductile and brittle behavior, respectively. It is suggested that the brittle behavior of alloy filaments is due to the presence of microvoids or micropores at the interface of PP and N6; these lead to stress concentration and thus to a decrease in tenacity, modulus, and elongation at break. Effects of the blending of N6 with PP on birefringence and crystalline and amorphous orientation factors of the composite filaments are studied. The amorphous orientation factor, fam, of PP was found to increase with an increase in the amount of N6. The alloy filaments behaved like isostrain materials and most of the force in spinning and drawing was born by the PP phase. The presence of N6 fibrils helped to orient PP chain molecules in amorphous regions. However, the crystalline factor, fc, of PP decreased with the increase in nylon fraction. This means the presence of the crystals of N6 caused a decrease in the orientation of the PP crystals. LSCM micrographs of the filament showed the presence of matrix–fibril morphology with the N6 fibrils oriented along the axis. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 532–544, 2005  相似文献   

2.
The effect of orientation on the structure and transport properties of high-density polyethylene film has been studied. Microstructure was characterized using small-angle light scattering, birefringence, and wide-angle x-ray scattering. Water vapor and oxygen transmission rates were determined as a function of film draw ratio. The object of the present work is to correlate the effects of postprocessing conditions on the transport properties and morphology of linear polyethylene. High-density spherulitic polyethylene films were produced by blown film extrusion and subsequently oriented by longitudinal stretching in a postoperation. Various degrees of orientation were imparted to the films, with percent crystallinity, sample orientation and transport properties measured as a function of draw ratio. For the postoriented films, results indicate there was no significant change in percent crystallinity with increasing draw ratio although water vapor and oxygen permeability decreased substantially. This is attributed to the increased orientation of the crystalline and amorphous regions and rod-like and microfibril structure formation brought about by the drawing process. Lower processing temperatures result in increased orientation which improves the vapor barrier properties.  相似文献   

3.
In this study, linear low‐density polyethylene films were produced using different processes (film blowing and biaxial orientation) and processing conditions. The orientation of the films was characterized in terms of their biaxial crystalline, amorphous, and global orientation factors using birefringence, tilted incidence polarized Fourier Transform Infrared Spectroscopy (FTIR), and X‐ray diffraction pole figures. Evaluation of a simplified FTIR procedure without the use of the tilted method for the determination of crystalline orientation factors proposed in the literature is also evaluated and assessed. The results indicate that FTIR overestimate the crystalline orientation factors, particularly for the crystalline a‐axis. Significant discrepancies are also observed for the b‐axis orientation, which may be due to an overlap of the amorphous phase contribution. Those differences are larger for films with low orientation, such as blown films. Amorphous phase orientation from FTIR depends on the band used and is not necessarily in agreement with that determined from the combination of X‐ray and birefringence. The simplified FTIR procedure is proven to be inadequate in the case of linear low‐density polyethylene blown films studied having a random lamellar crystalline morphology. POLYM. ENG. SCI. 46:1182–1189, 2006. © 2006 Society of Plastics Engineers.  相似文献   

4.
Biaxially oriented linear low density polyethylene (LLDPE) films were produced using the double bubble process with different machine direction (MD) orientation levels and the same transverse direction (TD) blow‐up ratio. Their mechanical behavior was characterized in terms of the tensile strength and tear resistance. The viscoelastic behavior of oriented films was studied using dynamic‐mechanical thermal analysis (DMTA). The microstructure and orientation were characterized using microscopy, X‐ray diffraction pole figures, and birefringence. The results indicate that MD ultimate tensile strength increases and the TD one decreases with MD stretching ratio. Tear propagation resistance, in general, remained mainly constant in TD and decreased in MD, as the draw ratio was increased. The morphology analyses exhibit a typical biaxial lamellar structure for all samples with different lamellar dimensions. Orientation of c‐axis in crystalline phase, molecular chain in amorphous phase along MD increased with draw ratio. In most crystals, a‐axis was located in the normal direction (ND) and the b‐axis in the ND–TD plane. A good correlation was observed between c‐axis orientation factor and MD mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3545–3553, 2006  相似文献   

5.
Films of two isotactic propylene homopolymers prepared with different catalysts and a propylene/ethylene copolymer were biaxially oriented under conditions of temperature and strain rate that were similar to those encountered in a commercial film process. The draw temperature was varied in the range between the onset of melting and the peak melting temperature. It was found that the stress response during stretching depended on the residual crystallinity in the same way for all three polymers. Biaxial orientation reduced the oxygen permeability of the oriented films, however, the reduction did not correlate with the amount of orientation as measured by birefringence, with the fraction of amorphous phase as determined by density, or with free volume hole size as determined by PALS. Rather, the decrease in permeability was attributed to reduced mobility of amorphous tie molecules. A single one‐to‐one correlation between the oxygen permeability and the intensity of the dynamic mechanical β‐relaxation was demonstrated for all the polymers used in the study. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Oriented HDPE films having a stacked lamellar morphology were prepared to develop microporous membranes through cast film extrusion followed by stretching. Applying higher draw ratios (DR) and annealing the cast films improved crystal alignments remarkably. It was shown the improvement in c‐axis orientation upon annealing was more significant for the films prepared with lower DR. Furthermore, applying Raman spectroscopy, the amorphous mass fraction of the films was obtained. Subsequently, considering a three‐phase structure (i.e., crystal, amorphous and interphase), the interphase content of the films was also determined. A distinct DR dependence of the interphase content was noticed. It was observed that in addition to crystal perfection upon annealing, the amorphous phase fraction was also decreased due to possibly increase in free volume, promoting lamellar separation and cavitation during the subsequent stretching step. SEM images of the membranes surfaces as well as their normalized water vapor transmission rate (WVTR) values indicated a more uniform pore formation and increased permeability with DR. Furthermore, it was found that lower interphase content in the films with higher DR favors lamellar separation. However, permeability in the stretched precursor films with DR higher than a certain level (DR = 93) was not improved significantly. Moreover, crystallinity and crystal orientation of produced membranes were investigated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44725.  相似文献   

7.
The polarized infrared (IR) spectroscopy technique was used to evaluate the surface uniaxial molecular orientation of films of poly(ethylene terephthalate) (PET), two thermotropic liquid crystalline polymers (LCPs), Vectra®A950 and Rodrun®LC5000, and their blends obtained by extrusion. The molecular orientation of the LCP and of the crystalline and amorphous PET phases in the draw direction was evaluated along the transverse section of the films and as a function of the blend composition. A compatibilizer agent was used to improve the interfacial adhesion between the PET and LCPs. The results showed that the surface molecular orientation of both LCPs was very high along the draw direction. However, when blended, the orientation of the LCP phase decreased drastically, it was dependent of its content and varied along the transverse section of the extruded films. The maximum orientation was observed in the blend with 5 wt % LCP content and at the position where the shear rate was maxima. The LCP Vectra®A950 showed higher orientation than the Rodrun®LC5000, as a pure material and as blended. For the PET phases, an alignment of the amorphous phase in the draw direction due to the presence of LCP and compatibilizer agent was observed. The crystalline phase of PET, however, showed no significant orientation in the draw direction. The compatibilizer agent proved efficient for both PET/LCP systems. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2241–2248, 2006  相似文献   

8.
The effect of thermal history on the oxygen permeability of biaxially oriented polypropylene (BOPP) films was investigated. Compression‐molded sheets prepared with different cooling rates were biaxially oriented at several temperatures in the range between the onset of melting and the peak melting temperature and at a strain rate similar to that encountered in a commercial film process. The stress response during stretching was found to depend on the residual crystallinity in the same way regardless of the thermal history of the compression‐molded sheet. Biaxial orientation reduced the oxygen permeability measured at 23°C; however, the reduction did not correlate with the amount of orientation as measured by birefringence or with the fraction of amorphous phase as determined by density. Rather, the decrease in permeability was attributed to reduced mobility of amorphous tie molecules. A single one‐to‐one correlation between the oxygen permeability and the intensity of the dynamic mechanical β‐relaxation was demonstrated for all the films used in the study. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
The development of crystalline structure and orientation during uniaxial stretching of cast amorphous linear and branched lactic acid films were investigated in the rubbery temperature ranges that spans between glass transition temperature and cold crystallization temperature. This material exhibited almost ideal stress‐strain behavior in the temperature range 65–80°C. Because of its strain crystallizability, films with uniform thickness can be obtained at high deformation levels as a result of self‐leveling. Branching was found to retard this self‐leveling through its slightly detrimental effect on the strain hardening. Upon stretching the material undergoes rapid orientation in the amorphous state and beyond a critical level very sharp and highly oriented β crystalline form chains with ?3/1 helix. If the temperature is at or below Tg, with additional stretching, the films were found to revert to a highly oriented amorphous state through the destruction of the crystalline domains. At higher temperatures, further stretching results in continuation of improvement in crystalline order.  相似文献   

10.
The structure and mechanical properties of highly oriented films of a miscible blend of syndiotactic polystyrene and poly(2,6‐dimethylphenylene‐1,4‐oxide) (sPS/PPO) were studied in the composition range of sPS/PPO = 10/0 to 5/5. The oriented films were prepared by stretching the amorphous films of the blends. Wide‐angle X‐ray diffraction and polarized FTIR spectroscopy were used to analyze the amount of mesophase and molecular orientation. Drawing of the amorphous films of sPS and sPS/PPO blend induced a highly oriented mesophase. The mesophase content increases with increasing draw ratio and becomes nearly constant above a draw ratio of 3. Under the same draw ratio, the mesophase content decreases with increasing PPO content. The orientation function in the mesophase is as high as 0.95–0.99 irrespective of the composition and draw ratio. On the other hand, the orientation of molecular chains in the amorphous phase and mesophase increases with increasing draw ratio, and it decreases with increasing PPO content. The drawn films of pure sPS show high strength and high modulus in the drawing direction, but exhibit low strength in the direction perpendicular to the drawing. In the case of sPS/PPO = 7/3 blend, however, the ultimate strength in the perpendicular direction was dramatically improved compared with that of pure sPS and the ultimate strength in the parallel direction was similar to that for the oriented pure sPS. The improved mechanical properties in the sPS/PPO blends were discussed in relation to the structural characteristics of the sPS/PPO blend system. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:2789–2797, 2004  相似文献   

11.
The effect of biaxial orientation by solid‐state crossrolling on the morphology of crystalline polymers including polypropylene (PP), high density polyethylene (HDPE) and Nylon 6/6 was investigated with polarized optical microscopy, atomic force microscopy, wide‐angle X‐ray scattering, and small‐angle X‐ray scattering techniques. It was found that crossrolling gradually changed the initial spherulitic structure into a biaxially oriented crystal texture with chain axis of crystals becoming parallel to the rolling direction for all three polymers. The effect of microstructure change on the macromechanical properties was studied in tension at both ambient temperature and ?40°C. In tension at room temperature, the localized necking deformation of HDPE and PP control changed upon orientation into homogeneous deformation for the entire sample length. This was attributed to that the oriented crystal morphology eliminated the stress concentration, which existed in the original spherulitic structure from lamellae orientation in the polar and equatorial regions. At ambient conditions, the elastic moduli of HDPE and PP were found to decrease slightly with orientation whereas the modulus of Nylon 6/6 increased with increasing orientation. This was due to the fact that the amorphous chains of HDPE and PP are in a rubbery state and orientation increased the shear relaxation in the orientation direction but the amorphous chains of Nylon 6/6 are in the glassy state inhibited the shear relaxation. Both the yield stress and strain hardening exponent increased with increasing orientation for all three polymers. In tension at ?40°C, orientation changed the failure mechanism of all three polymers from brittle fracture into ductile failure, as the original spherulitic structure was changed into an oriented structure with chain axis of crystals becoming parallel to the tension direction, which allowed chain slip deformation of crystals and resulted in oriented samples showing ductile failure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
A detailed study was conducted to investigate the effects of horizontal isothermal bath (hIB) on the production of ultra‐high performance polypropylene filaments. Two different commercial PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The optimum process conditions depended on polymer molecular weight. Fibers showed distinct precursor morphology for each at each optimum process condition. However, two sets of filaments demonstrated similar fiber tenacity and modulus of about 7 and 75 g d?1, respectively, for as‐spun and more than 12 g d?1 for tenacity and more than 190 g d?1 for modulus values of drawn fibers after just 1.49 draw ratio. The mean value for the modulus after the drawing process for the high melt flow rate was 196 g d?1. The theoretical modulus of PP is 35–42 GPa19, (275–330 g d?1), shows the hIB fiber's modulus performance is approaching its theoretical maximum value. Fibers had greatly improved thermal properties, degree of crystallinity, crystalline and amorphous orientation factors. The hIB spinning system produced highly oriented and predominantly amorphous structure for as‐spun fibers and a well‐defined, highly oriented crystalline fibrillar and amorphous structure after drawing process with the draw ratios lower than 1.5. POLYM. ENG. SCI., 55:327–339, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
This work reports an in situ wide‐angle X‐ray scattering (WAXS) study of the structural evolution of PET with distinct initial morphologies during step uniaxial stretching in the solid state. Two types of samples were analyzed under synchrotron X‐ray radiation, namely quasi‐amorphous (QA) and semicrystalline (SC) (with 2D and 3D order). Results show that initially different QA morphologies evolve following the same stages: (i) stage I (before neck), at almost constant orientation level the amorphous phase evolves into mesophase; (ii) stage II (neck formation), there is a rapid increase of polymer orientation and the appearance of a periodical mesophase from the highly oriented mesophase; (iii) stage III (necking propagation), there is a leveling off of the average polymer orientation together with partial conversion of the periodical mesophase and mesophase into highly oriented amorphous. The behaviors of the two SC morphologies are completely distinct. A 2D order crystalline morphology evolves with stretching likewise the QA through three stages: (i) at early stages of deformation the polymer orientation remains unchanged while the amorphous phase amount increases slightly, stage I; (ii) in stage II, a fast increase of polymer orientation is accompanied by large formation of mesophase; and (iii) in stage III there is the level off of polymer orientation as the chains approach their finite extensibility and the 3D crystalline order is achieved. Evolution of SC sample with 3D crystalline order mainly features constant orientation increase together with mesophase increment. Structure deformation models are suggested. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Crystalline syndiotactic styrene/p‐methyl styrene copolymer (SPMS) has been oriented by tensile drawing at various temperatures between the glass transition and crystalline melting point. The microstructural changes resulting from drawing have been studied using differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). WIth increasing draw temperature, both melting temperature and crystalline dimensions of the oriented samples increase. The heat of fusion increases with increasing draw temperature up to ~200°C. It also increases with draw ratio and draw rate, while the crystalline width increases only with draw ratio. THe amorphous fraction shows a clear glass transition, the temperature of which (Tg) increases with draw ratio. However, Tg decreases somewhat with increasing draw temperature. This is interpreted in terms of the stretching of the randomly coiled amorphous phase molecules.  相似文献   

15.
Two polypropylene cast films of different crystalline structures (one with coexisting small rows of lamellae and spherulites and the other with only a spherulitic structure) were prepared by extrusion. The produced cast films were uniaxially hot drawn at T = 120 °C using a machine direction orientation (MDO) unit and the changes in structure and morphology were examined and related to barrier as well as tear and puncture properties. Structural changes in terms of the degree of crystallinity and crystal size distribution, orientation of the amorphous and crystalline phases, and the deformation behavior at the crystal lattice and lamellae scales were investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS), respectively. A significant effect of the original crystal morphology on the alignment of the amorphous and crystalline phases was observed from FTIR and WAXD. The results also revealed that the deformation behavior of the crystal structure was dependent on the draw ratio (DR). Our findings showed that by increasing DR the crystal lamellae first broke up and oriented along the drawing direction and then, at large DR, they were deformed and created a fibrillar structure. Morphological pictograms illustrating the effects of original morphology and draw ratio on the stretched film microstructure are proposed. The tear resistance along the machine direction (MD) decreased significantly with increasing DR whereas the puncture resistance increased drastically. Finally, the oxygen transmission rate (OTR) of the MDO stretched films could be correlated with the orientation parameters as well as the β-relaxation peak magnitude of the amorphous tie chains.  相似文献   

16.
The effect of the drawing process on the structural characteristics and mechanical properties of polyacrylonitrile (PAN) fibers was comparatively studied. The protofibers extruded from the spinneret were the initial phase of stretching, which involved the deformation of the primitive fiber with the concurrent orientation of the fibrils. Wet‐spun PAN fibers observed by scanning electron microscopy exhibited different cross‐sectional shapes as the draw ratio was varied. X‐ray diffraction results revealed that the crystalline orientation of PAN fibers increased with increasing draw ratio; these differences in the orientation behaviors were attributed to the various drawing mechanisms involved. The crystalline and amorphous orientations of the PAN fibers showed different features; at the same time, the tensile properties were strongly dependent on the draw ratio. However, the stream stretch ratio had most influence on the tensile strength and the orientation of PAN fibers for the selected process parameters. Electron spin resonance proved that the local morphology and segmental dynamics of the protofibers were due to a more heterogeneous environment caused by the sequence structure. Differential scanning calorimetry indicated that the size and shape of the exotherm and exoenergic reaction were strongly dependent on the morphology and physical changes occurring during fiber formation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1026–1037, 2007  相似文献   

17.
Films of polypropylene/organically modified montmorillonite (PP/OMMT) nanocomposites were drawn at two different temperatures with various draw ratios. The effect of OMMT on the orientations of the crystalline and amorphous phases was studied using polarized infrared spectroscopy. It is found that OMMT layers always retard the orientation of the crystalline phase. The higher the OMMT loading, the stronger the retardance effect. In contrast, the effect of OMMT layers on the orientation of the amorphous phase depends on draw temperature and OMMT loading. A favorable effect on the orientation of the amorphous phase is observed at low OMMT loading and high draw temperature, but the retardance prevails at high OMMT loading and low draw temperature. The favorable effect on orientation at high draw temperature is attributed to the stabilization effect of OMMT layers on the conformation of amorphous PP chains. Such an effect was further verified by comparing the crystallization behavior and the morphologies of drawn PP and PP/OMMT films crystallized from 180°C. Memory effect is observed for crystallization of drawn PP/OMMT film, but it is not obvious for the drawn film of neat PP. Spherulites are formed for orientated neat PP films cooled from 180°C, but cylindrites are still formed after the drawn PP/OMMT films undergo melting at 180°C and recrystallization. The stabilization effect disappears at higher temperature (230°C). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The role played by sorbed water molecules present within poly(ethylene terephthalate) film at the moment of uniaxial drawing on the appearance and the percentage of the strain‐induced crystalline (SIC) phase is investigated by birefringence, X‐ray diffraction, and differential scanning calorimetry measurements. We show that, for law draw ratio, water play its traditional plasticizer effects. The SIC phase appears for a draw ratio, which depends weakly on the relative humidity. The water does not modify the degree of crystallinity of drawn films but impedes the growth of a part of the crystallites and modify their crystalline size. For high draw ratio, water impedes the orientation of the amorphous phase. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1056–1066, 2000  相似文献   

19.
In this study, we investigated the effect of orientation by solid‐state cross‐rolling on the morphology, puncture deformation, and fracture mechanism of an amorphous TROGAMID material and three semicrystalline polymers: high‐density polyethylene (HDPE), polypropylene (PP), and nylon 6/6. In amorphous TROGAMID, it was found that orientation preferentially aligned polymer chains along the rolling deformation direction and reduced the plastic deformation of TROGAMID in a low‐temperature puncture test. The decrease of ductility with orientation changed the fracture mechanism of TROGAMID from ductile hole enlargement failure in the unoriented control to a more brittle delamination failure in TROGAMID cross‐rolled to a 75% thickness reduction. For semicrystalline polymers HDPE, PP, and nylon 6/6, the randomly oriented crystalline lamellae in the controls were first oriented into an oblique angle to the rolling direction (RD) before the lamellae became fragmented and preferentially oriented with the chain axis parallel to the RD. The morphological change resulted in the decrease of ductility in HDPE in the low‐temperature puncture test. In PP and nylon 6/6, the brittle fracture of unoriented controls was changed into ductile failure when they were cross‐rolled to a 50% thickness reduction. This was attributed to the tilted crystal lamellae morphology, which permitted chain slip deformation of crystals with the chain axis parallel to the maximum shear stress direction. With further orientation of PP and nylon 6/6 to a 75% thickness reduction, the failure mechanism changed back to brittle fracture as the morphology transformed into a layered discoid structure with the chain axis of the fragmented crystal blocks parallel to the RD; this prevented chain slip deformation of the crystals. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Four kinds of polypropylene (PP) cast films with different die draw ratios (DDR) were prepared. The impact of different DDR on the crystalline and oriented properties of PP cast films and annealed films was explored herein. Wide angle X-ray diffraction (WAXD) and fourier transform infrared (FTIR) methods were adopted to examine the orientation degree of crystalline and amorphous phases. Long period distance (Lp) of the crystalline structure was tested by small angle X-ray scattering (SAXS). Crystallization was determined by differential scanning calorimeter (DSC). The oriented and crystalline behaviors of the samples were carried out by the elastic recovery (ER) testing. Then, samples after being annealed were examined by the same methods. The influence of annealing process on the films’ structures and properties was explored. Besides, the final stretched microporous membranes manufactured via stretching the annealed films along machine direction were examined by scanning electronic microscope (SEM). No matter for cast films or for annealed films, it is found that the films’ orientation degree of crystalline and amorphous phases, as well as Lp and crystallinity are larger at higher DDR and relatively lower at lower DDR. When the DDR is overly high (DDR?=?170), both the oriented and crystalline properties will decline. Elastic recovery testing indicates that a film with better orientation of the crystalline and the amorphous phases as well as with higher crystallinity can be obtained at an appropriate DDR. SEM images show that stretched membranes with better microporous structure can be obtained when the precursor film is prepared at a proper DDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号