首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Stimuli‐responsive hydrogels are typically obtained from non‐biodegradable monomers. The use of biodegradable crosslinkers can overcome this limitation. In this context, the main aim of this work was to use modified polycaprolactone as a crosslinker in the preparation of pH‐responsive hydrogels based on N‐isopropylacrylamide and methacrylic acid to give poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(N‐iPAAm‐co‐MAA)). RESULTS: Poly(caprolactone) dimethacrylate macromonomer was synthesized and successfully employed as crosslinker with various ratios in the synthesis of well‐known pH‐responsive hydrogels of P(N‐iPAAm‐co‐MAA). The swelling properties of these degradable hydrogels were investigated. They practically do not swell at pH = 2, but exhibit a very high swelling capacity in distilled water and in solutions of pH = 7. In addition, degradation studies at pH = 12 showed that the hydrolysis of the ester groups in the polycaprolactone chains produces, after a relatively short time, the total solubilization of the polymer chains. CONCLUSION: The hydrogels under study have certain characteristics that could make them good candidates for use as matrices in controlled drug delivery. On the one hand, they do not swell in acid pH solution (stomach conditions) but they swell extensively at neutral pH. On the other hand, they became rapidly water soluble following degradation. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
A facile method was explored to synthesize thermosensitive poly[N‐isopropylacrylamide (NIPAM)‐co‐methacryloxyethyltrimethyl ammonium chloride (DMC)]/Na2WO4 cationic hydrogels via copolymerization of NIPAM and DMC in the presence of Na2WO4. Na2WO4 acted as both a physical crosslinking agent and a porogen precursor. The hydrogels were characterized by Fourier transform infrared spectroscopy, energy dispersive X‐ray, thermogravimetry, environmental scanning electron microscopy, and transmission electron microscopy. Effects of various salt solutions, pH solutions on swelling were investigated. Thermosensitivity of the hydrogels were also investigated in various polar solvents at different temperatures. The resultant hydrogel showed a fast swelling rate and good salt tolerance. The hydrogels reached the swelling equilibrium within 10 min. Moreover, the swelling ratio of the hydrogels increased with the increase of the polarity of the solvent. In the water, the swelling ratio decreased with the increasing of temperature, but remained at a high level even at 80 °C since the pore structure weaken the lower critical solution temperature effect of PNIPAM. The swelling ratio increased instead in low polar solvent, while it became negligible in nonpolar solvent with the increasing of temperature. The whole swelling kinetics was fit for Schott's pseudo‐second order model. The hydrogels have a great potential as catalysts and smart materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46375.  相似文献   

4.
In this study, N‐vinylpyrrolidone(VP)/methacrylic acid (MAA) mixtures have been prepared at three different mole percents which the methacrylic acid composition around 5, 10, and 15%. Poly(N‐vinylpyrrolidone‐co‐methacrylicacid) P(VP/MAA) hydrogels irradiated at 3.4 kGy have been used for swelling and diffusion studies in water and uranyl ion solutions. The influence of dose, pH, relative amounts of monomers in MAA/VP monomer mixtures on the swelling properties have been investigated. P(VP/MAA) hydrogels were swollen in distilled water at pH 7.0. P(VP/MAA)1 hydrogel containing 36% (mole percent) methacrylic acid showed the maximum percent swelling in water. Adsorption isotherms were constructed for uranyl ions and P(VP/MAA) hydrogel systems. It has been found that P(VP/MAA) hydrogels have very high uptake of the uranyl ions succesfully in water containing uranyl ions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
N‐Isopropylacrylamide (NIPA) has been copolymerized with itaconic acid (IA) in the presence of N,N‐methylenebisacrylamide (BIS) as crosslinker. The swelling capacity and the release rate of aminophylline at 37 °C are reported. Maximum equilibrium swelling increases as the itaconic acid content in the hydrogel increases. The experimental data suggest clearly that the swelling process obeys second‐order kinetics. According to this, the kinetic constant, k, and the maximum equilibrium swelling, W, have been calculated. Drug release from fully swollen hydrogels follows Fick's law closely, but deviates from it for xerogels. © 2001 Society of Chemical Industry  相似文献   

6.
Hydrogels based on commercially available 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA), with methacrylic acid (MAA) as comonomer, are studied. The incorporation of an ionizable monomer, such as MAA, in a thermosensitive system leads to the formation of hydrogels able to respond to pH and temperature according to their monomeric composition. Thus, at low pH, the acid groups of MAA are protonated, and they do not contribute to increase the hydrophilic balance, and collapse of the hydrogels occurs around room temperature. For temperatures below that of collapse, the degree of swelling increases with increasing MEO2MA content. In contrast, at neutral or basic pH, the ionization of the acid groups contributes to increase the hydrophilicity and the osmotic pressure, leading to polyelectrolyte behaviour. In this regime, the swelling capacity increases and the thermosensitivity decreases with increasing MAA content in the hydrogels. These properties make poly(MEO2MA‐co‐MAA) hydrogels suitable candidates for use in oral controlled delivery of hydrophobic drugs. This possibility is explored using ibuprofen as a model drug, after a complete study of the swelling kinetics. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Hydrophobic poly(N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐lauryl acrylate) [P(DMAPMA‐co‐LA)] hydrogels with different LA content were synthesized by free‐radical crosslinking copolymerization of corresponding monomers in water by using N,N‐methylenebis(acrylamide) as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the hydrogels was investigated as a function of temperature and hydrophobic comonomer content in pure water. An interesting feature of the swelling behavior of the P(DMAPMA‐co‐LA) hydrogels with low LA content was the reshrinking phase transition where the hydrogels swell once and collapse as temperature was varied in the range of 30–40°C. The average molecular mass between crosslinks (M?c) and polymer–solvent interaction parameter (χ) of the hydrogels were calculated from equilibrium swelling values. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter for the hydrogels were determined by using the Flory–Rehner theory based on the phantom network model of swelling equilibrium. The positive values for ΔH and ΔS indicated that the hydrogels had a positive temperature‐sensitive property in water, that is, swelling at a higher temperature and shrinking at a lower temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4159–4166, 2006  相似文献   

8.
Hydrogels are hydrophilic polymers that swell to an equilibrium volume in the presence of water, preserving their shape. The dynamic swelling behavior of poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) [poly(NIPA‐co‐DMA)] copolymers at 37°C was investigated. It was observed that the swelling degree in the copolymers decreases with the N‐isopropylacrylamide content. In addition, the liberation mechanism was found to be Fickian. Diffusion coefficients according to Fick′s law as a function of the N‐isopropylacrylamide concentration and results of the release process are reported. The kinetics of cephazoline sodium release from poly(NIPA‐co‐DMA) hydrogels with different compositions was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3433–3437, 2004  相似文献   

9.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

10.
Beads composed of alginate, poly(N‐isopropylacrylamide) (PNIPAM), the copolymers of N‐isopropylacrylamide and methacrylic acid (P(NIPAM‐co‐MAA)), and the copolymers of N‐isopropylacrylamide, methacrylic acid, and octadecyl acrylate (P(NIPAM‐co‐MAA‐co‐ODA)), were prepared by dropping the polymer solutions into CaCl2 solution. The beads were freeze‐dried and the release of blue dextran entrapped in the beads was observed in distilled water with time and pH. The degree of release was in the order of alginate bead < alginate/PNIPAM bead ≈ alginate/P(NIPAM‐co‐MAA) bead < alginate/P(NIPAM‐co‐MAA‐co‐ODA) bead. On the other hand, swelling ratios reached steady state within 20 min, and the values were 200–800 depending on the bead composition. The degree of swelling showed the same order as that of release. Among the beads, only alginate/P(NIPAM‐co‐MAA‐co‐ODA) bead exhibited pH‐dependent release. At acidic condition, inter‐ and intraelectrostatic repulsion is weak and P(NIPAM‐co‐MAA‐co‐ODA) could readily be assembled into an aggregate due to the prevailing hydrophobic interaction of ODA. Thus, it could block the pore of bead matrix, leading to a suppressed release. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Novel porous hydrogels were successfully synthesized from hemicelluloses (HCs) and acrylamide (Am) with poly(ethylene glycol) (PEG) as the porogen. The prepared hydrogels were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy (SEM). The results show that the used PEG was not involved in the formation process of the hydrogels, and the HC‐g‐polyacrylamide hydrogels displayed a higher thermal stability than the hemicellulosic polymer. SEM analysis confirmed that the prepared hydrogels had porous structures. The effects of the Am/HC ratio, the amount and molecular weight of PEG and the amount of the crosslinker N,N‐methylene bisacrylamide on the swelling ratio of the prepared hydrogels were investigated in detail. The experimental data were fitted with the exponential heuristic equation and the Schott second‐order dynamic equation. The diffusion of water molecules into the hydrogel network was found to be non‐Fickian in behavior, and the swelling kinetics could be described by the Schott second‐order dynamic equation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Nine different poly(n‐isopropylacrylamide)‐based hydrogels, including nonionic, cationic, and anionic hydrogels, were synthesized in with and without the addition of pore‐forming agents. The synthesized hydrogels were characterized with dry gel density measurements, scanning electron microscopy observations, and the determination of the swelling ratio swelling kinetics. All the results showed that the cationic hydrogels had faster swelling kinetics than the anionic and nonionic hydrogels. The addition of pore‐forming agents (NaHCO3 and carboxymethylcellulose) during the synthesis process led to porous hydrogels with lower dry densities, swelling ratios, and swelling kinetic parameter values. An empirical equation was developed to successfully correlate the swelling kinetic parameter with the hydrogel swelling ratio. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3651–3658, 2004  相似文献   

13.
The physical properties found during the swelling process of poly(2‐hydroxyethyl methacrylate) (PHEMA) and of copolymers of HEMA with mono‐n‐methyl itaconate, synthesized by solution and bulk polymerization, are reported. The swelling kinetics were followed at four different temperatures (295, 300, 305 and 310 K). Experimental data follow second‐order swelling kinetics, from where the kinetic rate constant k and the swelling capacity at equilibrium W were calculated as a function of temperature. The kinetic rate constant obeys Arrhenius behaviour. The following network parameters were determined for the hydrogels: Young's moduli E, effective crosslinking density ve, molar mass per crosslink MC, volume fraction ϕ2 and polymer‐liquid interaction parameter χ. © 2000 Society of Chemical Industry  相似文献   

14.
A novel hydrogel poly(acrylamide‐co‐poly‐N‐methylacrylamide) grafted katira gum (KG) was synthesized via free radical copolymerization using a mixture of acrylamide and N‐methylacrylamide in presence of N,N′‐methylene‐bis‐acrylamide as a crosslinking agent. A series of hydrogels (KG‐1 to KG‐6) were prepared by varying amount of acrylamide and N‐methylacryamide. Poly‐acrylamide‐g‐katira gum (PAM‐g‐KG) and poly‐N‐methylacrylamide‐g‐katira gum (PNMA‐g‐KG) hydrogels were also prepared using same crosslinking agent. Swelling characteristics of all the prepared hydrogels in water were evaluated and the hydrogel with best swelling property (KG‐6) was identified. The hydrogel KG‐6 was characterized by FTIR, X‐ray diffractometer, and scanning electron microscopy and was used for the adsorption of textile dyes namely methylene blue (MB), malachite green (MG), and congo red (CR) from single and ternary solutions. Adsorption dynamics, kinetics, isotherm, and thermodynamics of all the prepared hydrogels were studied in the ternary dye solutions. The sorption kinetics data were fitted well to pseudo‐second order and the equilibrium adsorption data were found to follow Freundlich isotherm model. The thermodynamics studies showed that the adsorption process was spontaneous and exothermic in nature. The preferential dye adsorption by the hydrogel was followed in the order MB > MG > CR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45958.  相似文献   

15.
Starch/(Ethylene glycol‐co‐Methacrylic acid) [Starch/(EG‐co‐MAA)] hydrogels were designed for controlled delivery of pesticides, such as Fluometuron (FH); Thiophanate Methyl (TF) and Trifluralin (TI) which are use in the agricultural field. The delivery device was prepared by using γ‐irradiation and was characterized by FTIR, DSC, and SEM. The swelling behavior of hydrogels as a function of copolymer composition and irradiation dose was detected. This article discusses the swelling kinetics of polymer matrix and release dynamics of Trifluralin from hydrogels for the evaluation of the diffusion mechanism and diffusion coefficients. The values of the diffusion exponent ‘n’ for both the swelling of hydrogels and the release of Trifluralin from the hydrogels have been observed between 0.56 and 0.86 when the MAA content in the polymers was varied from 20 to 80 wt %, respectively. It is inferred from the values of the ‘n’ that non‐Fickian diffusion mechanism has occurred for different EG/MAA compositions. The release rate from matrices prepared under different conditions was studied to determine which factors have the most affect and control over the hydrogel matrix release property. The preparation conditions such as EG/MAA hydrogel composition, pesticide concentration, type of pesticide and irradiation dose greatly affect the pesticide release rate, which also influenced by the pH and temperature of the matrix‐surrounding medium. The pesticide release rate decreased as the irradiation dose and pH increased, but it increased as the MAA content, pesticide concentration and temperature increased. The release rate of Trifluralin is the highest one, whereas the Fluometuron is the lowest. The properties of the prepared hydrogels may make them acceptable for practical use as bioactive controlled release matrices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Hydrogels based on 2‐hydroxyethyl methacrylate (HEMA), methacrylic acid (MAA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were prepared by free radical polymerization. The prepared hydrogels were characterized using Fourier transform infrared spectrometry. The states of water in the hydrogels were probed using differential scanning calorimetry and three types of water (free, freezing bound and non‐freezing bound) were detected, the contents of which were calculated. Compared with conventional poly(HEMA‐co‐MAA) hydrogels, the deswelling rate of the poly(HEMA‐co‐PEGMA‐co‐MAA) hydrogels is significantly improved, owing to the introduction of PEGMA. The deswelling process can be well described with a first‐order kinetics equation. Moreover, the swelling ratio of poly(HEMA‐co‐PEGMA‐co‐MAA) hydrogels exhibits a temperature dependence. Based on the analysis of the components of the hydrogels, a brushed core/shell structure is proposed for these, and confirmed by transmission electron microscopy observations. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
Thermoresponsive hydrogels based on N‐isopropylacrylamide and N‐vinylimidazole were synthesized, and their swelling–deswelling behavior was studied as a function of the total monomer concentration. For copolymeric structures with better thermoresponsive properties with respect to poly(N‐isopropylacrylamide‐coN‐vinylimidazole) hydrogels, these hydrogels were protonated with HCl and HNO3, and the copolymer behaviors were compared with those of the unprotonated hydrogels. The temperature was changed from 4 to 70°C at fixed pHs and total ionic strengths. The equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all the hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1619–1624, 2004  相似文献   

18.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

19.
A series of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was prepared by free‐radical crosslinking copolymerization of N‐isopropylacrylamide (NIPA) and N,N′‐methylenebisacrylamide (BAAm) in aqueous solutions of poly(ethylene glycol) of molecular weight 300 g/mol (PEG). The amount of PEG in the polymerization solvent, the crosslinker (BAAm) content, and the gel preparation temperature (Tprep) were varied in the gelation experiments. The hydrogels were characterized by the equilibrium swelling and elasticity tests as well as by the measurements of the deswelling–reswelling kinetics of the hydrogels in response to a temperature change between 25 and 48°C. The rate of deswelling of the swollen gel increases while the rate of reswelling of the collapsed gel decreases as the amount of PEG in the polymerization solvent is increased or as the crosslinker content is decreased. The Tprep effect on the swelling kinetics of the hydrogels was only observed if the PEG content of the polymerization solvent is less than 20%, which is explained with the screening of H‐bonding interactions in concentrated PEG solution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 37–44, 2006  相似文献   

20.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号