首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将双(p-乙酰胺基苯氧基)二甲基硅烷(AAPDS)作为改性扩链剂加入到聚氨酯(PU)涂层的室温固化体系中,以改善PU涂层的耐热性能。运用凝胶时间测定仪和热失重分析仪(TGA)对不同AAPDS加入量对PU涂层的凝胶时间和热失重温度的影响进行了研究;并测试了涂层在金属基体上的附着强度随高温处理时间的变化。结果表明,向涂层固化体系中加入占多元醇总质量4.5%的AAPDS后,固化凝胶时间由未改性时的14.0 min缩短至12.1 min,涂层的初始失重温度和失重5%的温度由273℃和278℃分别提高到296℃和302℃;在400℃下高温处理120 s后附着强度保留率达到80.9%,远高于未改性涂层的57.1%。  相似文献   

2.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   

3.
二(p-氨基苯氧基)二甲基硅烷的合成   总被引:1,自引:0,他引:1  
通过二甲基二氯硅烷与对氨基苯酚的反应合成了1种新型氨基硅氧烷,采用核磁共振光谱,红外光谱及质谱对产物结构进行了表征并研究了溶剂?温度?原料配比以及反应时间等对合成产物的影响。结果表明,最佳合成反应条件为:对氨基苯酚与二甲基二氯硅烷的物质的量比为1.85∶1,苯作溶剂,反应温度70℃,反应时间7.5 h,产物收率可达61.5%。  相似文献   

4.
Homopolymers and copolymers were synthesized by polycondensation and copolycondensation, with varying feed ratios of bis(3‐hydroxypropyl terephthalate) (BHPT) and bis(4‐hydroxybutyl terephthalate) (BHBT) at 270°C. In addition, in the mol ratio of 1:1, copoly(trimethylene terephthalate/butylene terephthalate) [P(TT/BT)], with reaction times of 5, 10, 20, 30, and 60 min, was synthesized to identify the chain‐growth process of the copolymers. From differential scanning calorimetry (DSC) data, it was found that a random copolymer might be formed during copolycondensation. The molecular structure of copolymers, formed through the interchange reaction of BHPT and BHBT, was investigated using carbon nuclear magnetic resonance spectroscopy (13C‐NMR). We calculated the sequence‐length distributions of trimethylene and butylene sequences and randomness in the copolymers using 13C‐NMR data. From the values of the number‐average sequence length calculated, it was determined that a random copolymer was produced: This result coincides with previous DSC data. The lateral spacing of the unit cell of the copolymer increased slowly when the mol percent of one monomer was increased to that of the other monomer, indicating broadening of the unit cell by lateral distortion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2200–2205, 2003  相似文献   

5.
A new difluoride 4,5‐bis(4‐fluorobenzoyl)‐1‐methylcyclohexene (DFKK) has been prepared with fumaryl chloride, fluorobenzene, and 2‐methyl‐1,3‐butadiene as starting materials through two steps of reactions. This DFKK monomer undergoes reaction with 2,2‐(p‐hydroxyphenyl)‐iso‐propane (BPA) in the presence of excess anhydrous potassium carbonate in sulfolane to give a high molecular weight reactive poly(ether ketone ketone) (PEKK) that is very soluble in solvents such as chloroform and N,N‐dimethylformamide at room temperature, has glass transition temperature of 182°C, and is easily cast into flexible and bale ivory film with tensile strength of 64 MPa. The 5% weight loss temperature is 407°C. Ring‐closing reaction of PEKK with hydrazine gives cyclized PEKK (CPEKK) with improved thermal stability and reduced solubility. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1866–1871, 2002; DOI 10.1002/app.10454  相似文献   

6.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

7.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006  相似文献   

8.
A series of novel ternary‐copolymer of fluorinated polyimides (PIs) were prepared from 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (pBATB), commercially available aromatic dianhydrides, and aromatic diamines via a conventional two‐step thermal or chemical imidization method. The structures of all the obtained PIs were characterized with FTIR, 1H‐NMR, and element analysis. Besides, the solubility, thermal stability, mechanical properties, and moisture uptakes of the PIs were investigated. The weight‐average molecular weight (Mw) and the number‐average molecular weight (Mn) of the PIs were determined using gel‐permeation chromatography (GPC). The PIs were readily dissolved not only in polar solvents such as DMF, DMAc, and NMP, but also in some common organic solvents, such as acetic ester, chloroform, and acetone. The glass transition temperatures of these PIs ranged from 201 to 234°C and the 10% weight loss temperatures ranged from 507 to 541°C in nitrogen. Meanwhile, all the PIs left around 50% residual even at 800°C in nitrogen. The GPC results indicated that the PIs possessed moderate‐to‐high number‐average molecular weight (Mn), ranging from 9609 to 17,628. Moreover, the polymer films exhibited good mechanical properties, with elongations at break of 8–21%, tensile strength of 66.5–89.8 MPa, and Young's modulus of 1.04–1.27 GPa, and low moisture uptakes of 0.54–1.13%. These excellent combination properties ensure that the polymer could be considered as potential candidates for photoelectric and microelectronic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
This paper describes the synthesis and characterization of N‐(4‐carboxyphenyl) itaconamic acid (CPA) and N‐(4‐carboxyphenyl) itaconimide (CPI) obtained by reacting itaconic anhydride with p‐aminobenzoic acid. Structural and thermal characterization of CPA and CPI was done using 1H‐NMR, FTIR, and differential scanning calorimetry (DSC). Copolymerization of CPA or CPI with methyl methacrylate (MMA) in solution was carried out at 60 °C using azobisisobutyronitrile as an initiator and dimethyl acetamide or THF as solvent. Feed compositions having varying mole fractions of CPA or CPI ranging from 0.05–0.20 or 0.1–0.5 were taken to prepare copolymers. Copolymerizations were terminated at low percentage conversion. Structural characterization of copolymers was done by 1H‐NMR and elemental analysis. Copolymer composition was determined using percentage nitrogen content. The reactivity ratios were r1 (MMA) = 0.68 ± 0.06 and r2 (CPI) = 0.46 ± 0.06. The intrinsic viscosity [η] was determined using an Ubbelohde suspension level viscometer. [η] decreased with increasing mole fraction of N‐(p‐carboxyphenyl) itaconimide or N‐(p‐carboxyphenyl) itaconamic acid in copolymers. Glass transition temperature and thermal stability of the copolymers were determined using DSC and thermogravimetric analysis, respectively. The glass transition temperature (Tg) as determined from DSC scans increased with increasing amounts of CPA or CPI in copolymers. A significant improvement in the char yield was observed upon copolymerization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1909–1915, 2005  相似文献   

11.
BACKGROUND: Endocrine disruptors in the aquatic environment and their potential adverse effects are currently issues of concern. One of these endocrine disruptors is 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane (BPP). In this work the molecular recognition interaction of BPP with β‐cyclodextrin (β‐CD) was studied using IR spectroscopy and steady state fluorescence spectroscopy, and the photocatalytic degradation behaviour of BPP based on molecular recognition interaction was investigated in a TiO2/UV–visible (λmax = 365 nm) system. This might provide a new method for the treatment of some organic pollutants in wastewater. RESULTS: β‐CD reacts with BPP to form a 1:1 inclusion complex, the formation constant of which is 4.94 × 103 L mol?1. The photodegradation rate constant of BPP after molecular recognition by β‐CD showed a 1.42‐fold increase in the TiO2/UV–visible (λmax = 365 nm) system. The photodegradation of BPP depended on the concentration of β‐CD, the pH value, the gaseous medium and the initial concentration of BPP. The photodegradation efficiency of BPP with molecular recognition was higher than that without molecular recognition. After 100 min of irradiation the mineralisation efficiency of BPP after molecular recognition by β‐CD reached 94.8%, whereas the mineralisation efficiency of BPP before molecular recognition by β‐CD was only 40.6%. CONCLUSION: The photocatalytic degradation of BPP after molecular recognition by β‐CD can be enhanced in the TiO2/UV‐visible (λmax = 365 nm) system. This enhancement is dependent on the enhancement of the adsorption of BPP, the moderate inclusion depth of BPP in the β‐CD cavity and the increase in the frontier electron density of BPP after molecular recognition. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

13.
A series of copolyimides (co‐PIs) with high molecular weights, excellent mechanical properties, heat‐resistant properties, and good solubilities in organic solvents were synthesized from six kinds of commercial dianhydrides (IIa–f) and 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene (I). Monomers (IIa–d) for synthesizing insoluble PIs and monomers (IIe,f) for synthesizing soluble PIs were used to synthesize co‐PIs with arbitrary solubilities. Nine kinds of soluble co‐PIs (IIIa–e and IVa–d) were synthesized through chemical or thermal cyclodehydration. These co‐PIs were found to be easily soluble as well as able to be processed by casting from their solutions such as NMP, DMAc, m‐cresol, pyridine, THF, and CH2Cl2. The easily dissolved characteristics of this series of co‐PIs stemmed from the t‐butyl group and ether group within I. Besides, when the used dianhydride molecules contained the organosoluble groups, the solubilities in organic solvents could be greatly enhanced. The co‐PIs could improve the processability of polymers, while increasing their flexible mechanical properties and maintaining their excellent heat‐resistant properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 87–95, 2000  相似文献   

14.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

15.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

16.
A series of new alternative poly(amide–imide)s (PAIs, IIIa–j ) was synthesized by the direct polycondensation of 1,4‐bis(4‐aminophenoxy)naphthalene (1,4‐BAPON) with various aromatic diimide–diacids. These polymers were obtained in quantitative yields with inherent viscosities of 0.71–1.03 dL/g. Except for IIIa, most of the polymers were soluble in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be solution‐cast into transparent, flexible, and tough films. The glass transition temperatures of these PAIs were in the range of 235–280°C. Thermogravimetric analyses established that these polymers were fairly stable up to 450°C, and 10% weight loss temperatures were recorded in the range of 520–569°C under nitrogen and 506–566°C under an air atmosphere. Compared with the PAIs with the 1,4‐bis(4‐aminophenoxy)benzene structure (series IV), the solubility of series III was better than that of series IV. Series III also exhibited lower crystallinity and better processability than those of series IV. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 217–225, 2000  相似文献   

17.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

18.
A series easily soluble polyarylates were synthesized from either 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane or tetramethylbisphenol A with various aromatic diacid chlorides by the two‐phase interfacial polycondensation. These polyarylates have the inherent viscositiesin the range of 0.36–0.97 dL/g, and their number‐average and weight‐average molecular weights determined by gel permeation chromatography are 14,200–43,200 and 31,900–102,500, respectively. All these polyarylates are readily soluble in a wide range of organic solvents, thus these polymers can be convenient to process into heat resistance films by cast, spin‐ or dip‐coating. The polyarylates have the glass transition temperatures in the range of 165.0–201.6°C. The pendent phenyl‐containing polyarylates reveal excellent thermal stability, and their initial degradation temperatures are all above 480°C and char yields at 700°C are 37.97–40.53% in nitrogen atmosphere. However, the polymers prepared from tetramethylbisphenol A have a large decrease in thermal stability, and their initial degradation temperatures in nitrogen are only about 440°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

20.
This article describes the curing behavior of diglycidyl ether of bisphenol‐A using Cysteine (A)/ Methionine (B)/Cystine (C)/ mixture of 4,4′‐diaminodiphenyl sulfone (DDS) and Cysteine/DDS and Methionine/DDS and Cystine in various molar ratios as curing agent. Differential scanning calorimetry was used to study the cure kinetics by recording the DSC scans at heating rates of 5, 10, 15, and 20°C/min. The peak exotherm temperature was found to be dependent on the heating rate, structure of the amino acids and on the DDS/amino acids molar ratio. A broad exotherm was observed in the temperature range of 150–245°C (EA), 155–240°C (EB), and 190–250°C (EC). Curing of DGEBA with mixture of amino acids and 4, 4′‐diaminodiphenyl sulfone (DDS) resulted in a decrease in characteristic curing temperatures. Activation energy of curing reaction is determined in accordance to Ozawa's method and was found to be dependent on the structure of the amino acids and on the ratio of 4,4′‐diaminodiphenyl sulfone (DDS) to amino acid. Thermal stability of the isothermally cured resins was evaluated using dynamic thermogravimetry in nitrogen atmosphere. No significant change has been observed in the char yield of all the samples, but it was highest in the system cured using either Cystine alone (EC‐1) or a mixture of DDS/Cystine (EC‐2, EC‐3, and EC‐4). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号