首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A posteriori error estimates and an adaptive refinement scheme of first‐order least‐squares meshfree method (LSMFM) are presented. The error indicators are readily computed from the residual. For an elliptic problem, the error indicators are further improved by applying the Aubin–Nitsche method. It is demonstrated, through numerical examples, that the error indicators coherently reflect the actual error. In the proposed refinement scheme, Voronoi cells are used for inserting new nodes at appropriate positions. Numerical examples show that the adaptive first‐order LSMFM, which combines the proposed error indicators and nodal refinement scheme, is effectively applied to the localized problems such as the shock formation in fluid dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The least-squares meshfree method for solving linear elastic problems   总被引:2,自引:0,他引:2  
 A meshfree method based on the first-order least-squares formulation for linear elasticity is presented. In the authors' previous work, the least-squares meshfree method has been shown to be highly robust to integration errors with the numerical examples of Poisson equation. In the present work, conventional formulation and compatibility-imposed formulation for linear elastic problems are studied on the convergence behavior of the solution and the robustness to the inaccurate integration using simply constructed background cells. In the least-squares formulation, both primal and dual variables can be approximated by the same function space. This can lead to higher rate of convergence for dual variables than Galerkin formulation. In general, the incompressible locking can be alleviated using mixed formulations. However, in meshfree framework these approaches involve an additional use of background grids to implement lower approximation space for dual variables. This difficulty is avoided in the present method and numerical examples show the uniform convergence performance in the incompressible limit. Therefore the present method has little burden of the requirement of background cells for the purposes of integration and alleviating the incompressible locking. Received: 16 December 2001 / Accepted: 4 November 2002  相似文献   

3.
A new efficient meshfree method is presented in which the first‐order least‐squares method is employed instead of the Galerkin's method. In the meshfree methods based on the Galerkin formulation, the source of many difficulties is in the numerical integration. The current method, in this respect, has different characteristics and is expected to remove some of the integration‐related problems. It is demonstrated through numerical examples that the present formulation is highly robust to integration errors. Therefore, numerical integration can be performed with great ease and effectiveness using very simple algorithms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Numerical integration of the Galerkin weak form in meshfree methods   总被引:20,自引:0,他引:20  
The numerical integration of Galerkin weak forms for meshfree methods is investigated and some improvements are presented. The character of the shape functions in meshfree methods is reviewed and compared to those used in the Finite Element Method (FEM). Emphasis is placed on the relationship between the supports of the shape functions and the subdomains used to integrate the discrete equations. The construction of quadrature cells without regard to the local supports of the shape functions is shown to result in the possibility of considerable integration error. Numerical studies using the meshfree Element Free Galerkin (EFG) method illustrate the effect of these errors on solutions to elliptic problems. A construct for integration cells which reduces quadrature error is presented. The observations and conclusions apply to all Galerkin methods which use meshfree approximations.  相似文献   

5.
Over the past two decades, meshfree methods have undergone significant development as a numerical tool to solve partial differential equations (PDEs). In contrast to finite elements, the basis functions in meshfree methods are smooth (nonpolynomial functions), and they do not rely on an underlying mesh structure for their construction. These features render meshfree methods to be particularly appealing for higher‐order PDEs and for large deformation simulations of solid continua. However, a deficiency that still persists in meshfree Galerkin methods is the inaccuracies in numerical integration, which affects the consistency and stability of the method. Several previous contributions have tackled the issue of integration errors with an eye on consistency, but without explicitly ensuring stability. In this paper, we draw on the recently proposed virtual element method, to present a formulation that guarantees both the consistency and stability of the approximate bilinear form. We adopt maximum‐entropy meshfree basis functions, but other meshfree basis functions can also be used within this framework. Numerical results for several two‐dimensional and three‐dimensional elliptic (Poisson and linear elastostatic) boundary‐value problems that demonstrate the effectiveness of the proposed formulation are presented. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
A locking-free meshfree curved beam formulation based on the stabilized conforming nodal integration is presented. Motivated by the pure bending solutions of thin curved beam, a meshfree approximation is constructed to represent pure bending mode without producing parasitic shear and membrane deformations. Furthermore, to obtain the exact pure bending solution (bending exactness condition), the integration constraints corresponding to the Galerkin weak form are derived. A nodal integration with curvature smoothing stabilization that satisfies the integration constraints is proposed under the Galerkin weak form for shear deformable curved beam. Numerical examples demonstrate that the resulting meshfree formulation can exactly reproduce pure bending mode with arbitrary dicretizations, and the method is stable and free of shear and membrane locking. Computational efficiency and accuracy are achieved simultaneously in the proposed formulation  相似文献   

7.
Because most approximation functions employed in meshfree methods are rational functions with overlapping supports, sufficiently accurate domain integration becomes costly, whereas insufficient accuracy in the domain integration leads to suboptimal convergence. In this paper, we show that it is possible to achieve optimal convergence by enforcing variational consistency between the domain integration and the test functions, and optimal convergence can be achieved with much less computational cost than using higher‐order quadrature rules. In fact, stabilized conforming nodal integration is variationally consistent, whereas Gauss integration and nodal integration are not. In this work the consistency conditions for arbitrary order exactness in the Galerkin approximation are set forth explicitly. The test functions are then constructed to be variationally consistent with the integration scheme up to a desired order. Attempts are also made to correct methods that are variationally inconsistent via modification of test functions, and several variationally consistent methods are derived under a unified framework. It is demonstrated that the solution errors of PDEs due to quadrature inaccuracy can be significantly reduced when the variationally inconsistent methods are corrected with the proposed method, and consequently the optimal convergence rate can be either partially or fully restored. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new meshfree formulation of stress‐point integration, called the floating stress‐point integration meshfree method, is proposed for the large deformation analysis of elastic and elastoplastic materials. This method is a Galerkin meshfree method with an updated Lagrangian procedure and a quasi‐implicit time‐advancing scheme without any background cell for domain integration. Its new formulation is based on incremental equilibrium equations derived from the incremental virtual work equation, which is not generally used in meshfree formulations. Hence, this technique allows the temporal continuity of the mechanical equilibrium to be naturally achieved. The details of the new formulation and several examples of the large deformation analysis of elastic and elastoplastic materials are presented to show the validity and accuracy of the proposed method in comparison with those of the finite element method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a two‐dimensional displacement‐based meshfree‐enriched FEM (ME‐FEM) is presented for the linear analysis of compressible and near‐incompressible planar elasticity. The ME‐FEM element is established by injecting a first‐order convex meshfree approximation into a low‐order finite element with an additional node. The convex meshfree approximation is constructed using the generalized meshfree approximation method and it possesses the Kronecker‐delta property on the element boundaries. The gradient matrix of ME‐FEM element satisfies the integration constraint for nodal integration and the resultant ME‐FEM formulation is shown to pass the constant stress test for the compressible media. The ME‐FEM interpolation is an element‐wise meshfree interpolation and is proven to be discrete divergence‐free in the incompressible limit. To prevent possible pressure oscillation in the near‐incompressible problems, an area‐weighted strain smoothing scheme incorporated with the divergence‐free ME‐FEM interpolation is introduced to provide the smoothing on strains and pressure. With this smoothed strain field, the discrete equations are derived based on a modified Hu–Washizu variational principle. Several numerical examples are presented to demonstrate the effectiveness of the proposed method for the compressible and near‐incompressible problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We propose two strategies of novel adaptive numerical integration based on mapping techniques for solving the complicated problems of domain integration encountered in meshfree methods. Several mapping methods are presented in detail that map a complex integration domain to much simpler ones, for example, squares, triangles or circles. The techniques described in the paper can be applied to both global and local weak forms, and the highly nonlinear meshfree integrands are evaluated with controlled accuracy. The necessity of the clumsy procedure of background mesh or cell structures used for integration purpose in existing meshfree methods is avoided, and many meshfree methods that require the domain integration can now become ‘truly meshfree’. Various numerical examples in two dimensions are considered to demonstrate the applicability and the effectiveness of the proposed methods and it shows that the accuracy is improved significantly. Their obtained results are compared with analytical solutions and other approaches and very good agreements are found. Additionally, some three‐dimensional cases applied by the present methods are also examined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A Hermite reproducing kernel Galerkin meshfree approach is proposed for buckling analysis of thin plates. This approach employs the Hermite reproducing kernel meshfree approximation that incorporates both the deflectional and rotational nodal variables into the approximation of the plate deflection and the C 1 continuous approximation requirement for the Galerkin analysis of thin plates can be easily achieved herein. The strain smoothing operation is consistently introduced to construct the smoothed rotation and curvature fields which appear in the weak form governing the thin plate buckling. The domain integration of the weak form is carried out by the method of sub-domain stabilized conforming integration with the smoothed measures of rotation and curvature, as leads to an efficient discrete meshfree formulation for the eigenvalue problem of thin plate buckling. A series of benchmark buckling problems are presented to assess the proposed algorithm and the results uniformly demonstrate the present approach is very effective and it performs superiorly compared to the conventional Galerkin meshfree formulations whose domain integration are performed by Gauss quadrature rules.  相似文献   

12.
A unified design sensitivity analysis method for a meshfree shell structure with respect to size, shape, and configuration design variables is presented in this paper. A shear deformable shell formulation is characterized by a CAD connection, thickness degeneration, meshfree discretization, and nodal integration. Because of a strong connection to the CAD tool, the design variable is selected from the CAD parameters, and a consistent design velocity field is then computed by perturbing the surface geometric matrix. The material derivative concept is utilized in order to obtain a design sensitivity equation in the parametric domain. Numerical examples show the accuracy and efficiency of the proposed design sensitivity analysis method compared to the analytical solution and the finite difference solution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
功能梯度材料的数值分析通常模型化为材料参数如弹性模量在空间的梯度分布,这将导致更为复杂的应力场,给数值求解带来一定困难。高阶无网格法能更精确地反映应力场,然而过多的积分点导致其计算效率低下。该文将原本针对均匀材料发展的二阶一致无网格法直接应用于功能梯度材料。数值结果表明,它大幅度减少了所需的积分点数目,同时仍然保持高阶无网格法的高精度和高收敛性,因而显著改善了无网格法分析功能梯度材料的计算效率。  相似文献   

14.
In this article, we present a novel nodal integration scheme for meshfree Galerkin methods, which draws on the mathematical framework of the virtual element method. We adopt linear maximum-entropy basis functions for the discretization of field variables, although the proposed scheme is applicable to any linear meshfree approximant. In our approach, the weak form integrals are nodally integrated using nodal representative cells that carry the nodal displacements and state variables such as strains and stresses. The nodal integration is performed using the virtual element decomposition, wherein the bilinear form is decomposed into a consistency part and a stability part that ensure consistency and stability of the method. The performance of the proposed nodal integration scheme is assessed through benchmark problems in linear and nonlinear analyses of solids for small displacements and small-strain kinematics. Numerical results are presented for linear elastostatics and linear elastodynamics and viscoelasticity. We demonstrate that the proposed nodally integrated meshfree method is accurate, converges optimally, and is more reliable and robust than a standard cell-based Gauss integrated meshfree method.  相似文献   

15.
A Hermite reproducing kernel (HRK) Galerkin meshfree formulation is presented for free vibration analysis of thin plates. In the HRK approximation the plate deflection is approximated by the deflection as well as slope nodal variables. The nth order reproducing conditions are imposed simultaneously on both the deflectional and rotational degrees of freedom. The resulting meshfree shape function turns out to have a much smaller necessary support size than its standard reproducing kernel counterpart. Obviously this reduction of minimum support size will accelerate the computation of meshfree shape function. To meet the bending exactness in the static sense and to remain the spatial stability the domain integration for stiffness as well as mass matrix is consistently carried out by using the sub-domain stabilized conforming integration (SSCI). Subsequently the proposed formulation is applied to study the free vibration of various benchmark thin plate problems. Numerical results uniformly reveal that the present method produces favorable solutions compared to those given by the high order Gauss integration (GI)-based Galerkin meshfree formulation. Moreover the effect of sub-domain refinement for the domain integration is also investigated.  相似文献   

16.
该文利用罚函数法施加边界条件,建立了Reissner-Mindlin板壳无网格法的离散形式,通过数值锁死试验,探讨了EFG法、RPIM以及基于节点积分的无网格法在解决Reissner-Mindlin板壳闭锁问题中所存在的优缺点。所得结果表明,基于匹配近似场和节点积分方案的无网格法在处理剪切闭锁问题时具有优越性。然后以SCNI-MLS无网格法为基础,对Reissner-Mindlin板壳结构的尺寸、形状和轮廓设计进行了统一的设计灵敏度分析,结合约束变尺度序列二次规划法,完成了SCNI-MLS无网格法壳结构优化设计的算例,算例结果验证了所建立灵敏度分析的精度和优化方法的可行性。  相似文献   

17.
A novel meshfree weak–strong (MWS) form method is proposed based on a combined formulation of both the strong-form and the local weak-form. In the MWS method, the problem domain and its boundary is represented by a set of distributed points or nodes. The strong form or the collocation method is used for all nodes whose local quadrature domains do not intersect with natural (Neumann) boundaries. Therefore, no numerical integration is required for these nodes. The local weak-form, which needs the local numerical integration, is only used for nodes on or near the natural boundaries. The locally supported radial point interpolation method and the moving least squares approximation are used to construct the meshfree shape functions. The final system matrix will be sparse and banded for computational efficiency. Numerical examples of two-dimensional solids are presented to demonstrate the efficiency, stability, accuracy and convergence of the proposed meshfree method.  相似文献   

18.
A dispersion analysis is carried out to study the dynamic behavior of the Hermite reproducing kernel (HRK) Galerkin meshfree formulation for thin beam and plate problems. The HRK approximation utilizes both the nodal deflectional and rotational variables to construct the meshfree approximation of the deflection field within the reproducing kernel framework. The discrete Galerkin formulation is fulfilled with the method of sub-domain stabilized conforming integration. In the dispersion analysis following the HRK Galerkin meshfree semi-discretization, both the deflectional and rotational nodal variables are expressed by harmonic functions and then substituted into the semi-discretized equation to yield the characteristic equation. Subsequently the numerical frequency and phase speed can be obtained. The transient analysis with full-discretization is performed by using the central difference time integration scheme. The results of dispersion analysis of thin beams and plates show that compared to the conventional Gauss integration-based meshfree formulation, the proposed method has more favorable dispersion performance. Thereafter the superior performance of the present method is also further demonstrated by several transient analysis examples.  相似文献   

19.
This paper presents a stabilized meshfree method formulated based on the strong formulation and local approximation using radial basis functions (RBFs). The purpose of this paper is two folds. First, a regularization procedure is developed for stabilizing the solution of the radial point collocation method (RPCM). Second, an adaptive scheme using the stabilized RPCM and residual based error indicator is established. It has been shown in this paper that the features of the meshfree strong-form method can facilitated an easier implementation of adaptive analysis. A new error indicator based on the residual is devised and used in this work. As shown in the numerical examples, the new error indicator can reflect the quality of the local approximation and the global accuracy of the solution. A number of examples have been presented to demonstrate the effectiveness of the present method for adaptive analysis.  相似文献   

20.
In this paper, we report the development of two new enrichment techniques for the method of finite spheres, a truly meshfree method developed for the solution of boundary value problems on geometrically complex domains. In the first method, the enrichment functions are multiplied by a weight function with compact support, while in the second one a floating ‘enrichment node’ is introduced. The scalability of the enrichment bubbles offers flexibility in localizing the spatial extent to which the enrichment field is applied. The bubbles are independent of the underlying geometric discretization and therefore provide a means of achieving convergence without excessive refinement. Several numerical examples involving problems with singular stress fields are provided demonstrating the effectiveness of the enrichment schemes and contrasting them to traditional ‘geometry‐dependent’ enrichment strategies in which one or more nodes associated with the geometric discretization of the domain are enriched. An additional contribution of this paper is the use of a meshfree numerical integration technique for computing the J‐integral using the domain integral method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号