首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In general, internal cells are required to solve elasticity problems by involving a gravitational load in non‐homogeneous bodies with variable mass density when using a conventional boundary element method (BEM). Then, the effect of mesh reduction is not achieved and one of the main merits of the BEM, which is the simplicity of data preparation, is lost. In this study, it is shown that the domain cells can be avoided by using the triple‐reciprocity BEM formulation, where the density of domain integral is expressed in terms of other fields that are represented by boundary densities and/or source densities at isolated interior points. Utilizing the rotational symmetry, the triple‐reciprocity BEM formulation is developed for axially symmetric elasticity problems in non‐homogeneous bodies under gravitational force. A new computer program was developed and applied to solve several test problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The scaled boundary finite‐element method is a novel semi‐analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. This paper develops a stress recovery procedure based on a modal interpretation of the scaled boundary finite‐element method solution process, using the superconvergent patch recovery technique. The recovered stresses are superconvergent, and are used to calculate a recovery‐type error estimator. A key feature of the procedure is the compatibility of the error estimator with the standard recovery‐type finite element estimator, allowing the scaled boundary finite‐element method to be compared directly with the finite element method for the first time. A plane strain problem for which an exact solution is available is presented, both to establish the accuracy of the proposed procedures, and to demonstrate the effectiveness of the scaled boundary finite‐element method. The scaled boundary finite‐element estimator is shown to predict the true error more closely than the equivalent finite element error estimator. Unlike their finite element counterparts, the stress recovery and error estimation techniques work well with unbounded domains and stress singularities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
A super‐element for the dynamic analysis of two‐dimensional crack problems is developed based on the scaled boundary finite‐element method. The boundary of the super‐element containing a crack tip is discretized with line elements. The governing partial differential equations formulated in the scaled boundary co‐ordinates are transformed to ordinary differential equations in the frequency domain by applying the Galerkin's weighted residual technique. The displacements in the radial direction from the crack tip to a point on the boundary are solved analytically without any a priori assumption. The scaled boundary finite‐element formulation leads to symmetric static stiffness and mass matrices. The super‐element can be coupled seamlessly with standard finite elements. The transient response is evaluated directly in the time domain using a standard time‐integration scheme. The stress field, including the singularity around the crack tip, is expressed semi‐analytically. The stress intensity factors are evaluated without directly addressing singular functions, as the limit in their definitions is performed analytically. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This work introduces a semi‐analytical formulation for the simulation and modeling of curved structures based on the scaled boundary finite element method (SBFEM). This approach adapts the fundamental idea of the SBFEM concept to scale a boundary to describe a geometry. Until now, scaling in SBFEM has exclusively been performed along a straight coordinate that enlarges, shrinks, or shifts a given boundary. In this novel approach, scaling is based on a polar or cylindrical coordinate system such that a boundary is shifted along a curved scaling direction. The derived formulations are used to compute the static and dynamic stiffness matrices of homogeneous curved structures. The resulting elements can be coupled to general SBFEM or FEM domains. For elastodynamic problems, computations are performed in the frequency domain. Results of this work are validated using the global matrix method and standard finite element analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The scaled boundary finite‐element method (a novel semi‐analytical method for solving linear partial differential equations) involves the solution of a quadratic eigenproblem, the computational expense of which rises rapidly as the number of degrees of freedom increases. Consequently, it is desirable to use the minimum number of degrees of freedom necessary to achieve the accuracy desired. Stress recovery and error estimation techniques for the method have recently been developed. This paper describes an h‐hierarchical adaptive procedure for the scaled boundary finite‐element method. To allow full advantage to be taken of the ability of the scaled boundary finite‐element method to model stress singularities at the scaling centre, and to avoid discretization of certain adjacent segments of the boundary, a sub‐structuring technique is used. The effectiveness of the procedure is demonstrated through a set of examples. The procedure is compared with a similar h‐hierarchical finite element procedure. Since the error estimators in both cases evaluate the energy norm of the stress error, the computational cost of solutions of similar overall accuracy can be compared directly. The examples include the first reported direct comparison of the computational efficiency of the scaled boundary finite‐element method and the finite element method. The scaled boundary finite‐element method is found to reduce the computational effort considerably. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A simple boundary element method for solving potential problems in non‐homogeneous media is presented. A physical parameter (e.g. heat conductivity, permeability, permittivity, resistivity, magnetic permeability) has a spatial distribution that varies with one or more co‐ordinates. For certain classes of material variations the non‐homogeneous problem can be transformed to known homogeneous problems such as those governed by the Laplace, Helmholtz and modified Helmholtz equations. A three‐dimensional Galerkin boundary element method implementation is presented for these cases. However, the present development is not restricted to Galerkin schemes and can be readily extended to other boundary integral methods such as standard collocation. A few test examples are given to verify the proposed formulation. The paper is supplemented by an Appendix, which presents an ABAQUS user‐subroutine for graded finite elements. The results from the finite element simulations are used for comparison with the present boundary element solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is devoted to the analysis of elastodynamic problems in 3D‐layered systems which are unbounded in the horizontal direction. For this purpose, a finite element model of the near field is coupled to a scaled boundary finite element model (SBFEM) of the far field. The SBFEM is originally based on describing the geometry of a half‐space or full‐space domain by scaling the geometry of the near field / far field interface using a radial coordinate. A modified form of the SBFEM for waves in a 2D layer is also available. None of these existing formulations can be used to describe a 3D‐layered medium. In this paper, a modified SBFEM for the analysis of 3D‐layered continua is derived. Based on the use of a scaling line instead of a scaling centre, a suitable scaled boundary transformation is proposed. The derivation of the corresponding scaled boundary finite element (SBFE) equations in displacement and stiffness is presented in detail. The latter is a nonlinear differential equation with respect to the radial coordinate, which has to be solved numerically for each excitation frequency considered in the analysis. Various numerical examples demonstrate the accuracy of the new method and its correct implementation. These include rigid circular and square foundations embedded in or resting on the surface of layered homogeneous or inhomogeneous 3D soil deposits over rigid bedrock. Hysteretic damping is assumed in some cases. The dynamic stiffness coefficients calculated using the proposed method are compared with analytical solutions or existing highly accurate numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Adaptive algorithms are important tools for efficient finite‐element mesh design. In this paper, an error controlled adaptive mesh‐refining algorithm is proposed for a non‐conforming low‐order finite‐element method for the Reissner–Mindlin plate model. The algorithm is controlled by a reliable and efficient residual‐based a posteriori error estimate, which is robust with respect to the plate's thickness. Numerical evidence for this and the efficiency of the new algorithm is provided in the sense that non‐optimal convergence rates are optimally improved in our numerical experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A modified version of an exact Non‐reflecting Boundary Condition (NRBC) first derived by Grote and Keller is implemented in a finite element formulation for the scalar wave equation. The NRBC annihilate the first N wave harmonics on a spherical truncation boundary, and may be viewed as an extension of the second‐order local boundary condition derived by Bayliss and Turkel. Two alternative finite element formulations are given. In the first, the boundary operator is implemented directly as a ‘natural’ boundary condition in the weak form of the initial–boundary value problem. In the second, the operator is implemented indirectly by introducing auxiliary variables on the truncation boundary. Several versions of implicit and explicit time‐integration schemes are presented for solution of the finite element semidiscrete equations concurrently with the first‐order differential equations associated with the NRBC and an auxiliary variable. Numerical studies are performed to assess the accuracy and convergence properties of the NRBC when implemented in the finite element method. The results demonstrate that the finite element formulation of the (modified) NRBC is remarkably robust, and highly accurate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The scaled boundary finite element method is a novel semi‐analytical technique, whose versatility, accuracy and efficiency are not only equal to, but potentially better than the finite element method and the boundary element method for certain problems. This paper investigates the possibility of using higher‐order polynomial functions for the shape functions. Two techniques for generating the higher‐order shape functions are investigated. In the first, the spectral element approach is used with Lagrange interpolation functions. In the second, hierarchical polynomial shape functions are employed to add new degrees of freedom into the domain without changing the existing ones, as in the p‐version of the finite element method. To check the accuracy of the proposed procedures, a plane strain problem for which an exact solution is available is employed. A more complex example involving three scaled boundary subdomains is also addressed. The rates of convergence of these examples under p‐refinement are compared with the corresponding rates of convergence achieved when uniform h‐refinement is used, allowing direct comparison of the computational cost of the two approaches. The results show that it is advantageous to use higher‐order elements, and that higher rates of convergence can be obtained using p‐refinement instead of h‐refinement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A novel boundary‐only formulation for transient temperature fields in bodies of non‐linear material properties and arbitrary non‐linear boundary conditions has been developed. The option for self‐irradiating boundaries has been included in the formulation. Heat conduction equation has been partially linearized by Kirchhoff's transformation. The result has been discretized by the dual reciprocity boundary element method. The integral equation of heat radiation has been discretized by the standard boundary element method. The coupling of the resulting two sets of equations has been accomplished by static condensation of the radiative heat fluxes arising in both sets. The final set of ordinary differential equations has been solved using the Runge–Kutta solver with automatic time step adjustment. The algorithm proved to be robust and stable. Numerical examples are included. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Digital imaging technologies such as X‐ray scans and ultrasound provide a convenient and non‐invasive way to capture high‐resolution images. The colour intensity of digital images provides information on the geometrical features and material distribution which can be utilised for stress analysis. The proposed approach employs an automatic and robust algorithm to generate quadtree (2D) or octree (3D) meshes from digital images. The use of polygonal elements (2D) or polyhedral elements (3D) constructed by the scaled boundary finite element method avoids the issue of hanging nodes (mesh incompatibility) commonly encountered by finite elements on quadtree or octree meshes. The computational effort is reduced by considering the small number of cell patterns occurring in a quadtree or an octree mesh. Examples with analytical solutions in 2D and 3D are provided to show the validity of the approach. Other examples including the analysis of 2D and 3D microstructures of concrete specimens as well as of a domain containing multiple spherical holes are presented to demonstrate the versatility and the simplicity of the proposed technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Digital images are increasingly being used as input data for computational analyses. This study presents an efficient numerical technique to perform image‐based elastoplastic analysis of materials and structures. The quadtree decomposition algorithm is employed for image‐based mesh generation, which is fully automatic and highly efficient. The quadtree cells are modeled by scaled boundary polytope elements, which eliminate the issue of hanging nodes faced by standard finite elements. A novel, simple, and efficient scaled boundary elastoplastic formulation with stablisation is developed. In this formulation, the return‐mapping calculation is only required to be performed at a single point in a polytope element, which facilitates the computational efficiency of the elastoplastic analysis and simplicity of implementation. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed technique for performing the elastoplastic analysis of high‐resolution images.  相似文献   

15.
This paper presents eight‐node solid‐shell elements for geometric non‐linear analysis of elastic shells. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. A selectively reduced integrated element is formulated with its membrane and bending shear strain components taken to be constant and equal to the ones evaluated at the element centroid. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger–Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid element, a hybrid‐stress solid‐shell element is formulated. Commonly employed geometric non‐linear homogeneous and laminated shell problems are attempted and our results are close to those of other state‐of‐the‐art elements. Moreover, the hybrid‐stress element converges more readily than the selectively reduced integrated element in all benchmark problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new finite‐element formulation for the solution of electromechanical boundary value problems is presented. As opposed to the standard formulation that uses scalar electric potential as nodal variables, this new formulation implements a vector potential from which components of electric displacement are derived. For linear piezoelectric materials with positive definite material moduli, the resulting finite‐element stiffness matrix from the vector potential formulation is also positive definite. If the material is non‐linear in a fashion characteristic of ferroelectric materials, it is demonstrated that a straightforward iterative solution procedure is unstable for the standard scalar potential formulation, but stable for the new vector potential formulation. Finally, the method is used to compute fields around a crack tip in an idealized non‐linear ferroelectric material, and results are compared to an analytical solution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The scaled boundary finite element method (FEM) is a recently developed semi‐analytical numerical approach combining advantages of the FEM and the boundary element method. Although for elastostatics, the governing homogeneous differential equations in the radial co‐ordinate can be solved analytically without much effort, an analytical solution to the non‐homogeneous differential equations in frequency domain for elastodynamics has so far only been obtained by a rather tedious series‐expansion procedure. This paper develops a much simpler procedure to obtain such an analytical solution by increasing the number of power series in the solution until the required accuracy is achieved. The procedure is applied to an extensive study of the steady‐state frequency response of a square plate subjected to harmonic excitation. Comparison of the results with those obtained using ABAQUS shows that the new method is as accurate as a detailed finite element model in calculating steady‐state responses for a wide range of frequencies using only a fraction of the degrees of freedom required in the latter. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a unified technique for solving the plate bending problems by extending the scaled boundary finite element method. The formulation is based on the three‐dimensional governing equation without enforcing the kinematics of plate theory. Only the in‐plane dimensions are discretised into finite elements. Any two‐dimensional displacement‐based elements can be employed. The solution along the thickness is expressed analytically by using a matrix function. The proposed technique is consistent with the three‐dimensional theory and applicable to both thick and thin plates without exhibiting the numerical locking phenomenon. Moreover, the use of higher order spectral elements allows the proposed technique to better represent curved boundaries and to achieve high accuracy and fast convergence. Numerical examples of various plate structures with different thickness‐to‐length ratios demonstrate the applicability and accuracy of the proposed technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a purely displacement-based formulation is presented within the framework of the scaled boundary finite element method to model compressible and nearly incompressible materials. A selective reduced integration technique combined with an analytical treatment in the nearly incompressible limit is employed to alleviate volumetric locking. The stiffness matrix is computed by solving the scaled boundary finite element equation. The salient feature of the proposed technique is that it neither requires a stabilization parameter nor adds additional degrees of freedom to handle volumetric locking. The efficiency and the robustness of the proposed approach is demonstrated by solving various numerical examples in two and three dimensions.  相似文献   

20.
This study presents the development of the scaled boundary finite element method (SBFEM) to simulate elastoplastic stress wave propagation problems subjected to transient dynamic loadings. Material nonlinearity is considered by first reformulating the SBFEM to obtain an explicit form of shape functions for polygons with an arbitrary number of sides. The material constitutive matrix and the residual stress fields are then determined as analytical polynomial functions in the scaled boundary coordinates through a local least squares fit to evaluate the elastoplastic stiffness matrix and the residual load vector semianalytically. The treatment of the inertial force within the solution of the nonlinear system of equations is also presented within the SBFEM framework. The nonlinear equation system is solved using the unconditionally stable Newmark time integration algorithm. The proposed formulation is validated using several benchmark numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号