首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new mixing process was explored to increase further the fracture toughness and to investigate the toughening mechanisms of epoxy/nylon blend. In this process, without mechanical mixing, the mixtures of epoxy and premade nylon 6 powder were heated without the curing agent to specific temperatures, referred to as the “mixing temperature.” For epoxy/nylon blends, at sufficiently high temperatures, a semi‐interpenetrating network‐like structure can be developed at the interphase via the reaction between the amine end group and the epoxide group. The depth of interphase and the extent of reaction depends on the mixing temperature. The strong dependency of the fracture energy on mixing temperature reveals the positive effect of the newly developed structure at the interphase. The increase of fracture toughness is possibly due to the enhanced crack fingering bifurcation/deflection mechanism resulting from the lamellae developed in the interphase and the enhanced plastic deformation of epoxy as a result of preyielding of the interphase. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1055–1063, 1999  相似文献   

2.
To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode‐I loading. The numerical analyses were based on 2‐D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane‐strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20–28, 2005. © 2004 Society of Plastics Engineers.  相似文献   

3.
The temperature dependence of tensile fracture behavior and tensile strength of a two-dimensional woven BN-coated Hi-Nicalon™ SiC fiber-reinforced SiC matrix composite fabricated by polymer infiltration pyrolysis (PIP) were studied. A tensile test of the composite was conducted in air at temperatures of 298 (room temperature), 1200, 1400, and 1600 K. The composite showed a nonlinear behavior for all the test temperatures; however, a large decrease in tensile strength was observed above 1200 K. Young's modulus was estimated from the initial linear regime of the tensile stress–strain curves at room and elevated temperatures, and a decrease in Young's modulus became significant above 1200 K. The multiple transverse cracking that occurred was independent of temperature, and the transverse crack density was measured from fractographic observations of the tested specimens at room and elevated temperatures. The temperature dependence of the effective interfacial shear stress was estimated from the measurements of the transverse crack density. The temperature dependence of in situ fiber strength properties was determined from fracture mirror size on the fracture surfaces of fibers. The decrease in the tensile strength of the composite up to 1400 K was attributed to the degradation in the strength properties of in situ fibers, and to the damage behavior exception of the fiber properties for 1600 K.  相似文献   

4.
《Polymer》2007,48(1):302-310
Diglycidyl ether of bisphenol A (DGEBA) is one of the most widely used epoxy resins for many industrial applications, including cryogenic engineering. In this paper, diethyl toluene diamine (DETD) cured DGEBA epoxy resin has been modified by two flexible diamines (D-230 and D-400). The cryogenic mechanical behaviors of the modified epoxy resins are studied in terms of the tensile properties and Charpy impact strength at cryogenic temperature (77 K) and compared to their corresponding properties at room temperature (RT). The results show that the addition of flexible diamines generally improves the elongation at break and impact strength at both RT and 77 K. The exception is the impact strength at 77 K filled with 21 wt% and 49 wt% D-400. Further, two interesting observations are made: (a) the cryogenic tensile strength increases with increasing the flexible diamine content; and (b) the RT tensile strength can only be improved by adding a proper content of flexible diamines. It is concluded that the addition of a selected amount namely 21–78 wt% of D-230 can simultaneously strengthen and toughen DGEBA epoxy resins at both RT and 77 K. However, only the addition of 21 wt% D-400 can simultaneously enhance the strength and ductility/impact strength of DGEBA epoxy resins at RT. The impact fracture surfaces are examined using scanning electron microscopy (SEM) to explain the impact strength results. Finally, differential scanning calorimetry (DSC) analysis shows that the glass transition temperature (Tg) decreases with increasing the flexible diamine content. The presence of a single Tg reveals that the flexible diamine-modified epoxy resins have a homogeneous phase structure.  相似文献   

5.
Epoxy acrylate‐based sterolithography resins have been used successfully as tools for injection molding. Molds made out of these resins fail at distinct times: during the first injection of plastic; during the first part first ejection; during either injection or ejection, but after a certain number of parts have been produced, which can be compared to a fatigue process. This paper presents corelations between measured properties of stereolithography molds and injection molding processing conditions so as to understand and predict mold failure. The study focuses on two stereolithography resins (SL 7510 and SL 7510) and one epoxy‐based composite material used for the high speed machining of prototype molds (Renboard). Rapid tooling materials are studied in fatigue, tensile, and fracture at injection molding operating temperatures and at room temperature. Finally, a method to address failure of molds is proposed using the theory of fracture.  相似文献   

6.
Polytetrafluoroethylene (PTFE) is a semi-crystalline polymer, which has been employed in a range of engineering applications due to its extremely low coefficient of friction, resistance to corrosion, and excellent electrical insulation properties. Despite failure-sensitive applications such as surgical implants, aerospace components, motor seals, and barriers for hazardous chemicals, the mechanisms of crack propagation in PTFE have received limited coverage in the literature. Moreover, PTFE exhibits complex crystalline phase behavior that includes four well-characterized phases with both local and long range order. Three crystalline structures (phases II, IV, and I) are observed at atmospheric pressure with transitions between them occurring at 19 and 30 °C. This observation provides a unique opportunity for investigation of the effects of a polymers crystalline phase on fracture and microstructure evolution. Moreover, due to the presence of three unique ambient pressure phases near room temperature, it is essential to develop an understanding of the effects of temperature-induced phase transitions on fracture mechanisms of PTFE to prevent failure over the normal range of operating temperatures. In this work, we present values for the J-integral fracture toughness of PTFE for a range of temperatures and loading rates employing the single specimen normalization technique. Crack propagation in PTFE is found to be strongly phase dependent with a brittle-to-ductile transition in the crack propagation behavior associated with the two room temperature phase transitions. Increases in fracture toughness are shown to result from the onset of stable fibril formation bridging the crack plane and increased plastic deformation. The stability of drawing fibrils is primarily determined by temperature and crystalline phase with additional dependence on loading rate and microstructure anisotropy. [LAUR-05-0004]  相似文献   

7.
In this work, the effect of the resin/hardener ratio on the small deformation, yield, post‐yield, and fracture behavior of a series of DGEBA‐Jeffamine epoxy‐clay nanocomposites with a fixed organo‐clay content (6 phr), and of the corresponding unfilled resins, was investigated. The mechanical behavior at small deformation was studied by means of uniaxial tensile tests, whereas compression tests were employed to investigate the large (yield and post‐yield) deformation levels. The fracture behavior was studied by the application of fracture mechanics testing methods. The results pointed out that small variations in the resin/hardener ratio used for the preparation of the resin can give rise to remarkable differences in the mechanical behavior at large deformation levels and at fracture. These effects were related to the parameters characteristic of the macromolecular architecture of the resins (chain segments flexibility and crosslink density). The results obtained on nanofilled systems showed that the effect of the resin/hardener ratio on the mechanical behavior of the resins is reduced in presence of organoclay particles. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
Hot pressed ZrB2–20 vol.% SiC ultra-high temperature ceramic composites have been prepared for strength and fracture investigations. Two composites fabricated under differing hot pressing temperatures with (ZSB) and without (ZS) B4C sintering aids were selected for room temperature modulus of rupture (MOR) strength and single-edge-notch bend (SENB) fracture toughness experiments. Structure property relationships were examined for both composites. MOR and stiffness temperature dependence was also investigated up to 1500 °C. Long crack propagation studies were conducted up to 1400 °C using the double cantilevered beam geometry with half-chevron-notch initiation zones. Residual Boron-rich carbide maximum particle sizes were found to be strength limiting in ZSB billets while SiC controlled strength in ZS billets. Flexure strength decreased linearly with temperature from 1000 to 1500 °C with no visible plastic deformation prior to fracture. Similar stiffness decreases were observed with a transition temperature range of 1100–1200 °C. Long crack studies produced R-curves that show no significant toughening behavior at room temperature with some modest rising R-curve behavior appearing at higher temperatures. These studies also show the plateau toughness increases with temperature up to 1200 °C. This is supported by an observed transition from primarily transgranular fracture at room temperature to primarily intergranular fracture at high temperatures. Wake zone toughening is evident up to 1000 °C with KR rise from 0.1 to 0.5 MPa√m. Beyond 1000 °C fracture mechanism transitions to include creep zone development ahead of crack tip with wake zone toughening vanishing.  相似文献   

9.
An oxidation-resistant interphase for layered alumina composites was prepared by aerosol spray deposition of submicrometer alumina powder. A model composite specimen was made by placing the interphase between thin layers of monolithic alumina. The composite sandwich was hot-pressed to control the interphase fracture resistance for successful crack deflection. Specimens were tested under four-point bending in air at two crosshead speeds at ambient temperature, 1000°C, and 1200°C. The fracture behavior was temperature dependent, with a higher work of fracture at higher temperatures. Interphase delamination and composite toughening behavior were very pronounced at all temperatures. At the highest temperature, the transition to multiple widely distributed cracks and increased crack deflection may be related to inelastic deformation in the alumina.  相似文献   

10.
To investigate the influence of moisture and EPR‐g‐MA content on the fracture behavior of glass–fiber reinforced PA6 materials, brittle‐to‐tough transition temperatures (Tbtt) were determined. Water absorption was taken into account by conditioning the analyzed materials. Tensile tests could reveal the temperature range of the largest moisture dependence of mechanical properties between 10 and 50°C. J‐integral values were used to describe the fracture behavior under conditions of impact load as a function of temperature. The brittle‐to‐tough transition of reinforced polyamides was found to be less approximate than in unreinforced materials. Two different characteristic temperature points Ts and Te were identified, which were the intercept between elastic and elastic–plastic deformation on the one hand and the starting point of dominating stable crack propagation with strong plastic deformation on the other hand. Characteristic brittle‐to‐tough transition temperatures Tbtt could be calculated as the arithmetic average of these two points. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The fracture behavior of ABS materials with a particle diameter of 110 nm and of 330 nm was studied using instrumented Charpy impact tests. The effects of rubber content and temperature on fracture behavior, deformation mode, stable crack extension, plastic zone size, J‐integral value, and crack opening displacement were investigated. In the case of a particle size of 110 nm, the material was found to break in a brittle manner, and the dominant crack mechanism was unstable crack propagation. Fracture toughness increases with increasing rubber content. In the case of a particle size of 330 nm, brittle‐to‐tough transition was observed. The J‐integral value first increases with rubber content, then levels off after the rubber content is greater than 16 wt %. The J‐integral value of a particle diameter of 330 nm was found to be much greater than that of 110 nm. The J‐integral value of both series first increased with increasing temperature until reaching the maximum value, after which it decreased with further increasing temperature. The conclusion is that a particle diameter of 330 nm is more efficient than that of 110 nm in toughening, but for both series the effectiveness of rubber modification decreases with increasing temperatures higher than 40°C because of intrinsic craze formation in the SAN matrix at temperatures near the glass transition of SAN. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 9–20, 2001  相似文献   

12.
The effect of physical aging on the fracture behavior, crack opening displacement, and plastic deformation zone of unmodified and rubber-modified epoxies was determined at two aging temperatures and different displacement rates. The strain energy release rate decreases to between 40 and 50% (for rubber modified and unmodified samples, respectively) of the unaged values after 35 days aging. Systematic dependence of the decrease in fracture toughness by aging on the rubber content is not apparent. The increased yield stress after physical aging is the main factor contributing to the reduction in fracture toughness, crack opening displacement, and plastic deformation zone. Physical aging suppresses the crack blunting mechanisms in epoxies.  相似文献   

13.
The temperature dependence of mechanical properties of two families of toughened silicone resins was investigated. The first family was representative of hydrosilylation reaction curable silicone resins, and the second representative of condensation reaction curable ones. The hydrosilylation curable resin was cross‐linked with a variety of cross‐linkers, including 1,4‐bis(dimethylsilyl) benzene, 1,1,3,3,5,5,‐hexamethyltrisiloxane, diphenylsilane, and their mixtures. The condensation reaction curable resin and its toughened versions were cross‐linked by silanol condensation. Properties studied included flexural strength, flexural modulus, and fracture toughness KIc. Temperature effect on these properties of the first family of resins was substantial and varied strongly with the type of cross‐linkers. For this family of resins the flexural strength and modulus decreased with a rising temperature. Fracture toughness KIc showed a peaking behavior with the peak appearing at approximately 62°C below the α transition peak. This was explained by the effect of the plastic zone size, and the effect of the network resistance to plastic deformation. The second family of resins also showed decreases in modulus and strength with a higher testing temperature, but the fracture toughness changed little with temperature. POLYM. ENG. SCI., 45:1522–1531, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
The fracture toughness of three‐dimensional random fibrous (3D RF) material was investigated from room temperature to 1273 K by virtue of experimental method, theoretical model and Finite Element Method (FEM) in the through‐the‐thickness (TTT) and in‐plane (IP) directions. The experiments showed that the fracture toughness in the TTT and IP directions increases (from 0.0617 to 0.0924 Mpa·m1/2 and from 0.2958 to 0.3982 Mpa·m1/2 for the TTT and IP directions, respectively) as the temperature until reaching a transition temperature (1123 K and 1223 K for the TTT and IP directions, respectively), then the fracture toughness decreases from 0.0924 to 0.0393 Mpa·m1/2 and from 0.3982 to 0.3106 Mpa·m1/2 for the TTT and IP directions, respectively. The fracture behavior was related to the bulk microstructures, the mechanical properties of fibers and the blunting of crack tip. The crack tip blunting affected the fracture toughness at elevated temperatures which was verified using the theoretical model. A FEM model with a single edge crack where special attention was drawn to the influence of the morphological characteristic was developed to simulate the fracture behavior of 3D RF material. Numerical results from the FEM modeling along with a theoretical model with crack tip blunting mechanism incorporated agreed well with the experimental results.  相似文献   

15.
The present investigation is concerned with the evaluation of the impact toughness of commercial‐grade Propylene polymers. Conventional impact static stress–strain and static fracture experiments were carried out. Static stress–strain experiments revealed different pattern behaviors among the materials that were reflected in the fracture behavior. Under static conditions, all materials exhibited ductile behavior and crack grew under J‐controlled conditions displaying stress whitening through the whole fracture surface with the sole exception of the homopolymer, which displayed a ductile instability after some stable crack growth. Under dynamic conditions the homopolymer exhibited brittle behavior, the block copolymer exhibited some plastic deformation at the crack tip, and the random copolymer samples exhibited a whitening effect due to voiding and craze formation through the whole fracture surface, indicating that stable crack propagation was occurring. Fracture mechanics tests were analyzed by following different methods, depending on the mode of fracture presented by the polymer. The Normalization J‐method was used under static conditions. The elastic method, the corrected elastic method, and the essential work of fracture methodology were used to characterize brittle, semibrittle, and ductile behavior, respectively. Fracture mechanics parameters arisen from both static and dynamic conditions are compared. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2681–2693, 1999  相似文献   

16.
In this work an analysis of the fracture behavior under impact of four epoxy resins was performed. The morphology of the fracture surfaces was analyzed by scanning electron microscopy and the topographic marks observed could be related to the thermal behavior of each epoxy system. The relevant properties that determine the thermal behavior were the thermal diffusivity, which was measured by using the open photoacoustic cell technique, and the glass transition temperature. As the thermal diffusivity of these materials is very low, and therefore also is their heat dissipation capacity, the impact test occurs under adiabatic conditions and a temperature increase occurs at the tip of the running cracks. Therefore, thermal blunting may occur at the crack tip and the energy absorption capacity of the resins is increased. The topographic marks observed at the fracture surface help to identify how efficient this mechanism is for each of the epoxy systems analyzed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2486–2492, 2000  相似文献   

17.
A series of tensile and three-point bending studies was conducted at various temperatures and loading rates using phenolphthalein polyether ketone (PEK-C). Yield stress, Young's modulus, fracture toughness, and crack opening displacement data were obtained for various conditions. In general, both yield stress and Young's modulus increase with decreasing temperature. However, the relationships between fracture toughness, loading rate, and temperature are very complex. This behavior is due to the simultaneous intersection of viscoelasticity and localized plastic deformation. The increased yield stress is the main factor contributing to the reduction in fracture toughness and crack opening displacement. The relationship between fracture toughness and yield stress are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Fracture initiation and fracture propagation toughening (R‐curve behavior) of polyamide 6,6 (PA‐66) polymers with different types of layered silicate clay having nanoscale (fully dispersed) or multiscale (mixed nanoscale/microscale) structure were studied. These results were compared to fracture data for conventional kaolin clay particulate reinforcements and a PA‐66 polyblend containing rubber and rigid poly(styrene‐co‐acrylonitrile) particulates. The stiffness increase due to the intercalated clay was the same as would be predicted by classical models for conventional elongated reinforcements at the same volume fraction level. The special benefit of the nanoscale reinforcement derived from their high surface area of contact with the matrix. Toughness in layered silicate clay composites was enhanced by better dispersion of the clay, by exfoliation of the clay layers, and by a stronger clay/matrix interface. A multiscale microstructure was found to be the more desirable microstructure, combining toughness from the nanodispersed clay with resistance curve behavior from the micrometer‐sized particulates. Fracture toughness was proportional to the crack‐tip plastic zone size at fracture, indicating that the clay reinforcements, by influencing shear deformation in the crack tip region, played an important role in promoting toughness. There was indirect evidence for the formation of a zone of damage within the crack‐tip plastic zone that could explain why toughness was not optimal.  相似文献   

19.
The fracture behavior of 1‐mm‐thick syndiotactic polypropylene (sPP) sheets of various crystallinity (owing the various stereo‐ and regioregularity) was studied by the essential work of fracture (EWF) concept. The specific work of fracture parameters were determined on tensile‐loaded deeply double‐edge notched (DDEN‐T) specimens at various deformation rates (v = 1, 10 and 100 mm/min) at ambient temperature. As the DDEN‐T specimens showed full ligament yielding prior to subsequent necking, the energy partitioning method was adopted for data reduction. The specific essential work of fracture slightly increased as a function of crystallinity. Its yielding‐related constituent increased with both crystallinity and deformation rate similarly to that of the yield strength and E‐modulus. The specific plastic work parameters were less sensitive to crystallinity and deformation rate. The strain‐induced crystalline phase transition from helical toward all‐trans conformation was accompanied by voiding and crazing.  相似文献   

20.
In this work, we explain why the incorporation of organically modified nano‐clay into unsaturated polyester resins, unlike epoxy, does not improve their fracture toughness despite continuing aggressive research activities based on this approach. The mechanism behind this phenomenon is explored by studying the effect of mixing method on improving the degree of exfoliation in simple nanocomposites and its final effect on fracture behaviour. Rheometry and X‐ray diffraction show that the two mixing methods lead to different degrees of exfoliation. The mechanical properties primarily depend on clay content and are less sensitive to degree of exfoliation. In the case of toughness, there is no observable effect of degree of exfoliation. This despite the increased fracture surface area evident in SEM images of the sample with finer exfoliation as compared with those of the sample with a lower degree of exfoliation. Dispersed silicate layers influence the toughness by increasing the tortuosity of the crack path locally while micron scale intercalated tactoids can result in crack deflection. Both of these mechanisms depend on localized plasticity for significant energy dissipation. Since unsaturated polyester has very low localized plasticity below ~90°C, one cannot significantly improve its room temperature toughness by manipulating the micro‐/nanostructure of the nanocomposite the nanocomposite without incorporating another material. This new understanding of the fracture behavior of unsaturated polyesters and their nanocomposites allows for the development of more complex toughened systems. POLYM. ENG. SCI., 55:1303–1309, 2015. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号