首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Random copolymers of N‐isopropylacrylamide (NIPA) and N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPM) were synthesized by solution polymerization using azobisizobutyronitrile as the initiator in 1,4‐dioxane at 60°C. NIPA‐co‐DMAPM copolymer exhibited both temperature and pH sensitivity. Thermally reversible phase transitions were observed both in the acidic and the alkaline pH regions for copolymers produced with different DMAPM/NIPA feed ratios. The pH dependency of the lower critical solution temperature (LCST) was stronger for copolymers produced with higher DMAPM feed concentrations. NIPA‐co‐DMAPM random copolymer was also sensitive to the albumin concentration. In the presence of albumin, thermally irreversible phase transitions were observed in slightly acidic and neutral media. However, reversible transitions were obtained in aqueous media containing albumin at basic pH. The phase‐transition temperature of NIPA‐co‐DMAPM copolymer significantly decreased with increasing albumin concentration at both acidic and alkaline pH values. This behavior was explained by albumin binding onto the copolymer chains by means of H‐bond formation between the dimethylamino groups of the copolymer and the carboxyl groups of albumin. For a certain range of albumin concentration, the phase‐transition temperature exhibited a linear decrease with increasing albumin concentration. By utilizing this behavior, a simple albumin assay was developed. The results indicated that NIPA‐co‐DMAPM copolymer could be utilized as a new reagent for the determination of albumin concentration in the aqueous medium. The proposed method was valid for the albumin concentration range of 0–4000 μg/mL. The protein concentrations commonly utilized in biotechnological studies fall in the range of the proposed method. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2060–2071, 2002; DOI 10.1002/app.10503  相似文献   

2.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Several different composition temperature‐ and pH‐sensitive poly(acrylic acid‐gN‐isopropylacrylamide) (P(AA‐g‐NIPAM)) graft copolymers were synthesized by free‐radical copolymerization utilizing macromonomer technique. The phase behavior and conformation change of P(AA‐g‐NIPAM) in aqueous solutions were investigated by UV–vis transmittance measurements, fluorescence probe, and fluorescence quenching techniques. The results demonstrate that the P(AA‐g‐NIPAM) copolymers have temperature‐ and pH‐sensitivities, and these different composition graft copolymers have different lower critical solution temperature (LCST) and critical phase transition pH values. The LCST of graft copolymer decreases with increasing PNIPAM content, and the critical phase transition pH value increases with increasing Poly(N‐isopropylacrylamide) (PNIPAM) content. At room temperature (20°C), different composition of P(AA‐g‐NIPAM) graft copolymers in dilute aqueous solutions (0.001 wt %) have a loose conformation, and there is no hydrophobic microdomain formation within researching pH range (pH 3 ~ 10). In addition, for the P(AA‐g‐NIPAM) aqueous solutions, transition from coil to globular is an incomplete reversible process in heating and cooling cycles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Poly(N,N‐diethylacrylamide) (PDEA), poly(acrylic acid) (PAA), and a series of (N,N‐diethylacrylamide‐co‐acrylic acid) (DEA‐AA) random copolymers were synthesized by the method of radical polymerization. The measurement of turbidity showed that the phase behaviors of the brine solutions of the copolymers changed dramatically with the mole fraction of DEA (x) in these copolymers. Copolymers cop6 (x = 0.06) and cop11 (x = 0.11) in which acrylic acid content was higher presented the upper critical solution temperature (UCST) phase behaviors similar to PAA. Copolymer cop27 (x = 0.27) presented the lower critical solution temperature (LCST) behavior similar to PDEA. While copolymer cop18 (x = 0.18) in which acrylic acid content was moderate presented both UCST and LCST behaviors. The solution properties of the polymers were investigated by measurements of viscosity, fluorescence, and pH. It is reasonable to suggest that the sharp change of the phase behavior may be attributed to the interaction between acrylamide group and carboxylic group in the (DEA‐AA) copolymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Polymer solutions that gel in response to changes in temperature and pH are of interest for various forms of drug delivery, and it is desirable to increase swelling for diffusion‐controlled release without bringing the lower critical solution temperature (LCST) above 37°C. N‐isopropylacrylamide (NIP) was polymerized with maleic acid (MAc), a diprotic acid, and acrylic acid (AAc), a monoprotic acid, to compare swelling and temperature response with changes in pH. For samples with equal acid contents and almost identical LCST responses to pH, poly(N‐isopropylacrylamide‐co‐maleic acid) (pNIP MAc) demonstrated greater swelling than poly(N‐isopropylacrylamide‐co‐acrylic acid) (pNIP AAc). The LCST increase for MAc occurred at a pH corresponding to the deprotonation of almost all of the first acid groups. Further increases in pH led to the deprotonation of the second ? COOH and only served to increase the charge concentration at a given location. These results provide strong support for the theory that LCST results largely from uninterrupted chain lengths of NIP and that swelling results from the actual charge density of acid groups along the chain. Because the use of a diprotic acid copolymer allows swelling to be decoupled from LCST, pNIP MAc may be an appropriate candidate for pH‐sensitive drug‐delivery applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2110–2116, 2004  相似文献   

6.
We report the preparation of responsive silica nanoparticles by reaction of epoxy modified silica with stimuli responsive poly (acrylic acid‐N‐isopropylacrylamide) (poly (AA‐co‐NIPAAm)). A series of copolymers of poly (AA‐co‐NIPAAm) were synthesized by a novel route, employing solid state condensation of polyacrylic acid and isopropyl amine in different feed ratios (44 mol %–100 mol % AA). The structure of the copolymers was characterized by FT‐IR, 1H‐NMR. The lower critical solution temperature (LCST) was found to vary with the copolymer composition. The pH dependence of the LCST was also observed, and the copolymers exhibited a higher LCST at neutral pH than at acidic pH (4–5). Selected copolymers were used to prepare responsive core‐shell particles. Silica nanoparticles modified using glycidoxy propyl trimethoxy propyl silane were reacted with the responsive copolymer to form responsive core‐shell particles. The influence of reaction conditions on the modification of silica particles and reaction with responsive copolymers was investigated. The hydrodynamic behavior of the synthesized thermo responsive nanoparticles was also studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A novel copolymer, poly(N‐isopropylacrylamide‐co‐hydroxypropyl methacrylate‐co‐3‐trimethoxysilypropyl methacrylate) has been synthesized and the hydrodynamic diameters in various aqueous solutions under different temperatures are determined by dynamic light scattering. The results show that the hydrodynamic diameters of copolymers have no obvious change in each working solution below lower critical solution temperature (LCST); across LCST, the diameters increased suddenly at different initial temperature in various aqueous solutions; above LCST, they decreased slightly as the temperature increased in UHQ water, and increased continuously with increasing temperature or salt concentration in saline solutions, and reduced with the rising of pH value in pH buffer. These are attributed to different intermolecular and intramolecular forces leading to disparity in dimension, conformation, and LCST of copolymers. The hydrogen bonding between water molecules and copolymer chains could maintain size and conformation of copolymer single chain; the hydrogen bonding between amide linkages and hydrophobic interactions between isopropyl groups result in intramolecular collapse and intermolecular aggregation; the electrostatic repulsion weakens aggregation extent of copolymers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
A series of novel star‐like copolymers H20‐poly(N‐isopropylacrylamide)‐random‐poly(poly(ethylene glycol) methyl ether methacrylate) (H20‐PNIPAm‐r‐PEGMA), which could respond to both temperature and ionic strength stimuli in aqueous solution were synthesized by atom transfer radical polymerization. Stimuli‐response of these copolymers in aqueous solution was characterized by dynamic laser scattering (DLS), 1H‐NMR and turbidity. In aqueous solution, these star‐like copolymers exhibited response to temperature and ionic strength with tunable low‐critical solution temperature (LCST) from 32 to 100°C. The LCST values of copolymers increased with increasing PEGMA contents, while decreased with increasing ionic strength. An interesting phenomenon, which should be a unique character of star‐like copolymer, was observed by the turbidity test of copolymer 1160. The addition of sodium chloride and increase of concentration can let copolymer 1160 behave normally, which was further confirmed by atomic force microscopy and DLS. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Water‐soluble thermosensitive polymers having phosphonium groups were synthesized by the copolymerization of N‐isopropylacrylamide (NIPAAm) with methacryloyloxyethyl trialkyl phosphonium chlorides (METRs) having varying alkyl lengths. The relative viscosities of the copolymer solutions increased with increasing content of phosphonium groups in the copolymers and decreased with increasing chain length of alkyl chains in the phosphonium groups. However, the copolymers of METR with octyl groups in phosphonium groups (METO) and NIPAAm became water insoluble with increasing contents of METO moieties in the copolymers. The transmittance at 660 nm of the copolymer solutions above the lower critical solution temperature (LCST) decreased gradually with increasing temperature and decreased with increasing chain length of alkyl chains in the phosphonium groups. The transmittance at 660 nm of the copolymer solutions above the LCST was greatly affected by the addition of neutral salts such as KCl. The copolymers of METR with ethyl groups in phosphonium groups and NIPAAm and those of METR with butyl groups in phosphonium groups and NIPAAm had high flocculating abilities against bacterial suspensions. The METO–NIPAAm copolymer was found to have a high antibacterial activity. The flocculating ability and the antibacterial activity of the copolymers were affected by not only the content of phosphonium groups but also the alkyl chain length in the phosphonium groups in the copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 386–393, 2003  相似文献   

10.
Copolymers of N‐isopropylacrylamide (NIPAAm), 2‐hydroxyethyl methacryl lactate (HEMA‐lactate) and acrylic acid (AAc) were prepared, with varying mole ratios of monomers, to develop a bioresorbable in‐situ‐gelling material with a time‐dependent lower critical solution temperature (LCST). The synthesized copolymers were characterized by nuclear magnetic resonance, gel permeation chromatography and differential scanning calorimetry. In 0.1 M phosphate‐buffered saline solution of pH 7.4, these copolymers had an LCST below body temperature. The LCST decreased as the HEMA‐lactate content of the copolymers was increased. Furthermore, in these conditions, the LCST of the copolymers exhibited time‐dependent properties, due to hydrolysis of the HEMA‐lactate. As the HEMA‐lactate hydrolyzed, the copolymers became more hydrophilic, thereby leading to an increase in LCST. This hydrophilicity caused copolymers of approximately 6 mol% of AAc to exhibit an LCST above body temperature after hydrolysis. In neutral solution, copolymers with varying mol% of AAc saw their LCST rise above 37 °C within one to ten days, depending upon the HEMA‐lactate/NIPAAm ratio, due to the complete hydrolysis of the HEMA‐lactate. The above properties indicate that these copolymers would be useful for drug delivery because their variable LCST makes them bioresorbable. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
A random copolymer of N‐isopropyl acrylamide (NIPAAm) and acrylic acid (AAc) with an AAc content of 3.1 ± 0.19 mmol of carboxylic acid groups per gram of the copolymer and with a number‐average molecular weight of 1400 was synthesized by free‐radical polymerization with 2,2′‐azoisobutyronitrile in dimethylformamide. Then, monopeptide, dipeptide, and tripeptide (i.e., alanine) conjugates of this copolymer were prepared with their carboxyl‐end‐protected (with methyl ester hydrochloride) form of alanine, with a water‐soluble carbodiimide. Of the carboxylic acids, 93, 69, and 57% were conjugated (loaded) with alanine at the monopeptide, dipeptide, and tripeptide conjugation steps, respectively. The chemical structures of the copolymer and conjugates were analyzed by Fourier transform infrared and 1H‐NMR, which revealed the conjugate formation. Amino acid conjugation caused significant decreases in the lower critical solution temperatures (LCST) of the copolymer, especially at pH 7.4. The LCST values of the dipeptide and tripeptide conjugates of poly(NIPAAm‐co‐AAc) at both pH 4.0 and 7.4 shifted to significantly higher temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2012–2019, 2003  相似文献   

12.
Water‐soluble copolymers of N‐acryloyl‐N‐methylpiperazine and N‐acetyl‐α‐aminoacrylic acid were synthesized by radical polymerization. The copolymerization yield ranged between 60 and 97%. The FTIR and NMR spectra demonstrated that the copolymerization occurred. The copolymer composition was determined from 1H‐NMR spectra by comparison of methyl groups from both moieties. The copolymers were richest in AAA units. The metal ion retention properties were investigated by the liquid‐phase polymer‐based retention (LPR) technique at different pH and filtration factors. The affinity for the metal ions depended on the copolymer composition, pH, and filtration factor. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2556–2561, 2002  相似文献   

13.
The synthesis of a thermoresponsive graft copolymer consisting of a maleic acid/vinyl acetate alternating copolymer backbone (MAc‐alt‐VA) and poly(N‐isopropylacrylamide) (PNIPAM) side chains is reported. Turbidimetric measurements in dilute aqueous solutions showed that no macroscopic phase separation takes place when the temperature is raised above the lower critical solution temperature (LCST) of PNIPAM, even at pH = 2. Moreover, in semi‐dilute aqueous solutions, a pronounced thermally induced viscosity increase (thermothickening) was observed. This thermoresponsive behaviour has been attributed to the interconnection of the hydrophilic MAc‐alt‐VA graft copolymer backbones by means of the hydrophobic PNIPAM side chain aggregates formed as the temperature increases above the LCST of this polymer. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
A series of hydrolysis‐improved thermosensitive polyorganophosphazenes with α‐amino‐ω‐methoxy‐poly(ethylene glycol) (AMPEG) and amino acid esters (AAEs) of ‘N,N‐systems’ was synthesized, and their properties were evaluated in comparison with the thermosensitive polyorganophosphazenes with methoxy‐poly(ethylene glycol) (MPEG) and AAEs of ‘O,N‐systems’, by means of 31P NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Most of the present polymers showed a lower critical solution temperature (LCST) in the range 32.0–79.0 °C, depending on the kinds of AAE, length of AMPEG and the mol ratio of the two substituents. These polymers exhibited higher LCSTs and faster degradation rates than the MPEG‐based polymers. The aqueous solution of poly(ethyl glycinate phosphazene)‐graft‐poly(ethylene glycol) [NP(GlyEt)0.94(AMPEG350)1.06]n did not show an LCST, which is presumed to be due to its high hydrophilicity, in contrast to [NP(GlyEt)1.01(MPEG350)0.99]n which showing an LCST at 77.5 °C. On the other hand, the polymers with a high content of AAE or with hydrophobic amino acids such as L ‐aspartic acid and L ‐glutamic acid, have shown a similar LCST to those of the MPEG‐based polymers. The half‐lives (t1/2) for hydrolysis of [NP(AMPEG350)1.06(GlyEt)0.94]n at pH 5, 7.4 and 10 were 9, 16, and 5 days, respectively, which are almost 2.5 to 4 times faster than that of the MPEG‐based polymers. The LCST of the present N,N‐polymers has been shown to be more influenced by salts such as NaCl (‘salting‐out’ effect) and tetrapropylammonium bromide (TPAB) (‘salting‐in’ effect) compared with the ‘O,N‐system’. Such differences of the ‘N,N‐systems’ from the ‘O,N‐systems’ in thermosensitivity, hydrolysis behavior and salt effect seem to be due to the higher hydrophilicity of the amino group in AMPEG. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Thermosensitive and water‐soluble copolymers were prepared through the copolymerization of acryloyloxypropyl phosphinic acid (APPA) and N‐isopropyl acrylamide (NIPAAm). The thermosensitivity of the copolymers and copolymer/metal complexes was studied. The APPA–NIPAAm copolymers with less than 11 mol % APPA moiety had a lower critical solution temperature (LCST) of approximately 45°C, but the APPA–NIPAAm copolymers with greater than 21 mol % APPA moiety had no LCST from 25 to 55°C. The APPA–NIPAAm copolymers had a higher adsorption capacity for Sm3+, Nd3+, and La3+ than for Cu2+, Ni2+ and Co2+. The APPA–NIPAAm (10:90) copolymer/metal (Sm3+, Nd3+, or La3+) complexes became water‐insoluble above 45°C at pH 6–7, but the APPA–NIPAAm (10:90) copolymer/metal (Cu2+,Ni2+, or Co2+) complexes were water‐soluble from 25 to 55°C at pH 6–7. The temperature at which both the APPA–NIPAAm copolymers and the copolymer/metal complexes became water‐insoluble increased as the pH values of the solutions increased. The APPA–NIPAAm copolymers were able to separate metal ions from their mixed solutions when the temperature of the solutions was changed; this was followed by centrifugation of the copolymer/metal complexes after the copolymers were added to the metal solutions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 116–125, 2004  相似文献   

16.
To study the water‐solution properties of a hydrophobically modified poly(N‐isopropylacrylamide) (PNIPAM) which is temperature‐sensitive, the copolymer of N‐isopropylacrylamide (NIPAM) and octadecyl acrylate (ODA) was synthesized. The aggregation behavior of the copolymer was studied by surface tension and fluorescence probe methods. Simultaneously, the phenomenon of the lower critical solution temperature (LCST) of the copolymer in an aqueous solution with increase of the temperature was also studied using the fluorescence probe method. The results showed that phase separation occurred in an aqueous solution of the copolymer when the temperature was increased to its LCST. The π‐A isotherms for the copolymer molecules, as an insoluble monolayer on the water–air interface, was determined by the Langmuir–Blodgett (L–B) method. The abnormal phenomenon, by which the monolayer of the copolymer molecules became more and more condensed with increase of the temperature, was observed. It further indicated that phase separation of the copolymer occurred by another method. In addition, to prove the thermosensitive effect of the copolymer on the release behavior of liposomes, small unilamellar vesicles entrapped with 5(6)‐carboxyfluorescein [5(6)‐CF] were coated with the copolymer. We found that the coating of the copolymer resulted in the reduction of the release below 30°C and enhancement of the release above 30°C, indicating that there are obvious interactions between the copolymer and the liposomes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 247–255, 2000  相似文献   

17.
Polymeric oxidants in the bead form that were macroporous styrene/divinylbenzene copolymers containing N‐chlorosulfonamide functional groups (in sodium or hydrogen form) or N‐bromosulfonamide groups (in sodium form) were synthesized and investigated to determine their oxidizing powers. The redox potentials of the N‐chlorosulfonamide/sulfonamide and N‐bromosulfonamide/sulfonamide systems were determined by potentiometric studies at different pH values with aqueous solutions of Na2SO3, KCN, and KSCN as reducers. The formal redox potentials of the N‐chlorosulfonamide copolymers were 0.79, 0.44, and ?0.12 V at pH's of 1.8, 8.45, and 13.6, respectively. The formal redox potential of the N‐bromosulfonamide copolymer was about 100 mV higher in comparable conditions and in solutions over pH = 5 (e.g., 0.56 V at pH = 8.56). The comparatively higher oxidizing power of the N‐bromosulfonamide copolymer was particularly evident in a strong alkaline medium (in which the N‐chlorosulfonamide copolymer was not reactive). In contrast, the N‐chlorosulfonamide copolymer showed strong oxidative properties in acidic media (in which the N‐bromosulfonamide copolymer decomposed itself). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

18.
BACKGROUND: Thermo‐responsive copolymers with racemate or single enantiomer groups are attracting increasing attention due to their fascinating functional properties and potential applications. However, there is a lack of systematic information about the lower critical solution temperature (LCST) of poly(N‐isopropylacrylamide)‐based thermo‐responsive chiral recognition systems. In this study, a series of thermo‐responsive chiral recognition copolymers, poly[(N‐isopropylacrylamide)‐co‐(N‐(S)‐sec‐butylacrylamide)] (PN‐S‐B) and poly[(N‐isopropylacrylamide)‐co‐(N‐(R,S)‐sec‐butylacrylamide)] (PN‐R,S‐B), with different molar compositions, were prepared. The effects of heating and cooling processes, optical activity and amount of chiral recognition groups in the copolymers on the LCSTs of the prepared copolymers were systematically studied. RESULTS: LCST hysteresis phenomena are found in the phase transition processes of PN‐S‐B and PN‐R,S‐B copolymers in a heating and cooling cycle. The LCSTs of PN‐S‐B and PN‐R,S‐B during the heating process are higher than those during the cooling process. With similar molar ratios of N‐isopropylacrylamide groups in the copolymers, the LCST of the copolymer containing a single enantiomer (PN‐S‐B) is lower than that of the copolymer containing racemate (PN‐R,S‐B) due to the steric structural difference. The LCSTs of PN‐R,S‐B copolymers are in inverse proportion to the molar contents of the hydrophobic R,S‐B moieties in these copolymers. CONCLUSION: The results provide valuable guidance for designing and fabricating thermo‐responsive chiral recognition systems with desired LCSTs. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Thermosensitive poly(N‐isopropylacrylamide‐co‐acrylamide) microgel particles were prepared through precipitation polymerization. The diameters of the microgel particles were in the range of 220–270 nm and showed a monodispersion. The lower critical solution temperatures (LCST) of the microgel dispersions were measured by dynamic light scattering and turbidimetric analysis. The results indicated that the LCST increased with an increase of acrylamide (AAm) content in the copolymer composition. The kinetics of the thermosensitive phase transitions of the microgel particles were investigated by time‐course UV–vis spectroscopy. The results indicated that the higher the content of AAm in copolymer composition, the more time is required for equilibrium deswelling and the less time required for equilibrium swelling. In addition, the time required for equilibrium deswelling decreased with an increase of the content of the microgel particles in dispersions. By contrast, the time required for equilibrium swelling increased slightly. Thus, a suitable LCST and time required for equilibrium of phase transition can be achieved by adjusting the molar ratio of the comonomers in the microgels and the content of the microgel particles in dispersions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The crosslinked copolymers of N‐vinylpyrrolidone with 1,4‐(N,N′‐bismaleimido)benzol and with trimethoxyvinylsilane were synthesized by free radical copolymerization. The copolymers were characterized by FTIR spectroscopy and thermal analysis. The values of specific surface area and porosity of the copolymers were determined with use of low‐temperature adsorption. Sorption capacity of the copolymers toward Re (VII), Mo (VI), and W(VI) ions was investigated and was found to depend strongly on the pH. A possibility to separate Re(VII) and Mo(VI) ions with use of the copolymers under investigation in their combined presence in neutral and alkaline media was shown. Moreover, in the conjoined presence of Mo(VI) and W(VI) ions at pH 5–14, tungsten(VI) can be separated from molybdenum(VI) with the copolymer of N‐vinylpyrrolidone with trimethoxyvinylsilane. POLYM. ENG. SCI., 56:1303–1312, 2016. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号