首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrowastes and woodflour are a potential and attractive alternative of cheap reinforcement for brittle polymeric materials because they can reduce costs and, at the same time, improve certain properties. On the other hand, their high moisture sorption and low microbial resistance are disadvantages that need to be considered and, as far as possible, corrected. Polyester resins are widely used throughout the world, and can be processed with reinforcing agents very easily. In this work, the effect of the addition of chemically modified woodflour on the final properties of unsaturated polyester composites was studied. The filler was treated with an alkaline solution to increase its interfacial area and then modified with maleic anhydride (MAN) under severe reaction conditions (140°C, 24 h). No improvement in the mechanical behavior of polyester–woodflour composites was found when particles were only alkali treated, while the composites prepared with MAN-treated woodflour offered better performance under compressive loads. Simple mechanical models used to fit the experimental flexural behavior indicated that a good compatibility between filler and matrix was obtained regardless of the kind (treated or untreated) of reinforcement used. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2121–2131, 1998  相似文献   

2.
Thermoset materials obtained from styrene/vinyl ester resins of different molecular weights modified with poly(methyl methacrylate) (PMMA) were prepared and studied. Scanning electron microscopy and transmission electron microscopy micrographs of the fracture surfaces allowed the determination of a two‐phase morphology of the modified networks. Depending on the molecular weight of the vinyl ester oligomer, the initial content of the PMMA additive, and the selected curing temperature, different morphologies were obtained, including the dispersion of thermoplastic‐rich particles in a thermoset‐rich matrix, cocontinuous structures, and the dispersion of thermoset‐rich particles in a thermoplastic‐rich matrix (phase‐inverted structure). Density measurements were performed to determine the effect of the PMMA‐modifier concentration and curing temperature on the volume shrinkage of the final materials. The development of cocontinuous or thermoplastic‐rich matrices was not too effective in controlling the volume shrinkage of the studied vinyl ester systems. The evaluation of the dynamic mechanical behavior, flexural modulus, compressive yield stress, and fracture toughness showed that the addition of PMMA increased the fracture resistance without significantly compromising the thermal or mechanical properties of the vinyl ester networks. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Biobased composites were manufactured with a compression‐molding technique. Novel thermoset resins from soybean oil were used as a matrix, and flax fibers were used as reinforcements. The air‐laid fibers were stacked randomly, the woven fabrics were stacked crosswise (0/90°), and impregnation was performed manually. The fiber/resin ratio was 60 : 40. The prepared biobased composites were characterized by impact and flexural testing. Scanning electron microscopy of knife‐cut cross sections of the specimens was also done to investigate the fiber–matrix interface. Thermogravimetric analysis of the composites was carried out to provide indications of thermal stability. Three resins from soybean oil [methacrylated soybean oil, methacrylic anhydride modified soybean oil (MMSO), and acetic anhydride modified soybean oil] were used as matrices. The impact strength of the composites with MMSO resin reinforced with air‐laid flax fibers was 24 kJ/m2, whereas that of the MMSO resin reinforced with woven flax fabric was between 24 and 29 kJ/m2. The flexural strength of the MMSO resin reinforced with air‐laid flax fibers was between 83 and 118 MPa, and the flexural modulus was between 4 and 6 GPa, whereas the flexural strength of the MMSO resin reinforced with woven fabric was between 90 and 110 MPa, and the flexural modulus was between 4.87 and 6.1 GPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

5.
通过超声分散和模具浇注成型法制备了周期性孪晶结构碳化硅(SiC)纳米线改性环氧树脂,探讨了SiC纳米线的周期性孪晶结构及含量对环氧树脂复合材料力学性能的影响。结果表明,周期性孪晶结构SiC纳米线的加入明显改善了环氧树脂基体的力学性能,孪晶结构有助于提高SiC纳米线与基体树脂之间的相互结合程度。随着孪晶SiC纳米线含量的增加,复合材料的拉伸性能和弯曲性能都呈现出先增加后减小的趋势。当SiC纳米线的含量为2%时,复合材料的拉伸强度、拉伸弹性模量、断裂伸长率、弯曲强度和弯曲弹性模量均达到最大值,相比于纯环氧树脂分别提高了90.6%,37.8%,38.3%,53.4%和24.5%。当SiC纳米线含量为3%时,弯曲应变达到最大值(6.72%),相比于环氧树脂提高了32.0%。  相似文献   

6.
The purpose of this project was to obtain new composites using filler and resin obtained from renewable resources, combining low cost and good mechanical properties. The matrix consisted of a polyester resin synthesized from linseed oil and further crosslinked with styrene in a peroxide‐initiated reaction. Composite materials made from the unsaturated polyester/styrene thermoset and containing various percentages of woodflour were prepared and tested. The relationships between the filler content, porosity fraction, and mechanical properties of the materials were evaluated. The bending modulus and strength of the composites were significantly higher than that of the matrix. Simple models were successfully applied in the analysis of the mechanical properties of the materials. The porosity effect was also considered in the model predictions. The results of the mechanical and dynamic mechanical tests, the scanning electron micrographs of surface fractures, and the adhesion parameter calculated from the strength models all indicated that there was a strong interfacial interaction between matrix and filler. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Strain rate has significant effect on mechanical behavior of the thermoset polymers. The rate sensitivity is more complicated for thermoset nanocomposites, which compose of two quite different types of materials. Nanofiller‐reinforced epoxy resin is widely used in the industry. In the present work, epoxy resin is reinforced by 0.05 to 0.7 wt% nanographene oxide (GO). The strain rate sensitivity of the fabricated nanocomposites is investigated through compressive test carried out at the strain rates of 0.001–1,900 s?1. The stress–strain curves of the nanocomposites indicated considerable difference between the low‐strain and high‐strain‐rate responses of the specimens. The results showed that the compressive strength of the nanocomposites was improved by more than 100% at high strain rates with respect to the low strain rates. Also, the addition of nano‐GO had influence on compressive strength enhancement but not as significant as the effect of strain rate. It was observed that the effect of GO was less important for higher strain rates. The experimental compressive strength and modulus of elasticity of the nanocomposites were casted in empirical relations for low and high strain rates for various filler weight percentages. Scanning electron microscopy was also used to examine the quality of GO dispersion. POLYM. ENG. SCI., 59:1636–1647 2019. © 2019 Society of Plastics Engineers  相似文献   

8.
王彩红  周秉正  何敏  鲁圣军 《聚氯乙烯》2011,39(12):16-18,24
采用低熔点尼龙6(LPA6)/液晶高分子(LCP)复合物对PVC进行共混改性,研究了LPA6/LCP含量对PVC/LPA6/LcP共混物力学性能及维卡软化温度的影响。结果表明:加入质量分数为10%以下的LPA6/LCP,可明显提高共混物的弯曲强度及弯曲模量;加入质量分数为30%以下的LPA6/LcP,可明显提高共混物的...  相似文献   

9.
A novel process has been developed to manufacture poly(methyl methacrylate) (PMMA) pultruded parts. The mechanical and dynamic mechanical properties, environmental effects, postformability of pultruded composites and properties of various fiber (glass, carbon and Kevlar 49 aramid fiber) reinforced PMMA composites have been studied. Results show that the mechanical and thermal properties (i.e. tensile strength, flexural strength and modulus, impact strength and HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest impact strength and HDT, while carbon fiber/PMMA composites show the highest tensile strength, tensile and flexural modulus, and glass fiber/PMMA composites show the highest flexural strength. Experimental tensile strengths of all composites except carbon fiber/PMMA composites follow the rule of mixtures. The deviation of carbon fiber/PMMA composite is due to the fiber breakage during processing. Pultruded glass fiber reinforced PMMA composites exhibit good weather resistance. They can be postformed by thermoforming, and mechanical properties can be improved by postforming. The dynamic shear storage modulus (G′) of pultruded glass fiber reinforced PMMA composites increased with decreasing pulling rate, and G′ was higher than that of pultruded Nylon 6 and polyester composites.  相似文献   

10.
Woodflour of Eucaliptus saligna with two different chemical treatments (mercerization and esterification with maleic anhydride) was used as filler of an unsaturated polyester matrix. Woodflour was treated to increase the interfacial adhesion with the matrix, to improve the dispersion of the particles, and to decrease the water sorption properties of the final composite. The objective of this study was to determine the influence of the moisture content and the woodflour chemical modification on the physical and mechanical properties of the different composites. Results indicated that mechanical properties (compression and bending tests) were severely affected by moisture and chemical modifications. In wet conditions, the composites made from treated woodflour had the lowest flexural modulus and ultimate stress. It was found that this was a reversible effect, because the original values of the compression properties were recovered after drying. Temperature scans in dynamic mechanical tests showed that an irreversible change occurred during exposure to humid environments, probably due to the hydrolysis of the polyester matrix. Essentially, the same behavior was observed for matrix and composites; however, a wood-related transition overlapped the main transition in the case of wet composites. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2069–2076, 1998  相似文献   

11.
In the following study, polyurethane (PUR) composites were modified with 2 wt.% of walnut shell filler modified with selected mineral compounds–perlite, montmorillonite, and halloysite. The impact of modified walnut shell fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), dynamic-mechanical behavior (glass transition temperature, storage modulus), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), and flame retardant properties (e.g., ignition time, limiting oxygen index, heat peak release) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with walnut shell filler functionalized with halloysite. For example, on the addition of such modified walnut shell filler, the compressive strength was enhanced by ~13%, flexural strength by ~12%, and impact strength by ~14%. Due to the functionalization of walnut shell filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in all cases, the value of peak heat release was reduced by ~12%, while the value of total smoke release was reduced by ~23%.  相似文献   

12.
Thermoset composites were produced from flax fibers and a novel lactic acid (LA)‐based thermoset resin. This resin is based on methacrylated, star‐shaped oligomers of LA. The main purpose of this work was to evaluate whether this resin can be used to produce structural composites from flax fibers. Composites were prepared by spray impregnation followed by compression molding at elevated temperature. The tests showed that composites can be produced with as much as 70 wt% fiber. The composites were evaluated by tensile testing, flexural testing, charpy impact test, dynamic mechanical thermal analysis (DMTA), and low‐vacuum scanning electron microscopy. The ageing properties in high humid conditions were evaluated, the Young's modulus ranged from 3 GPa to 9 GPa in the best case. This work shows that structural composites can be produced from renewable material. It is clear from the results that these composites have properties that make them suitable for furniture, panels, or automotive parts. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
使用硅烷偶联剂表面处理的木粉(MW)和未改性木粉(UW)填充不饱和聚酯树脂(UPR)制备了复合材料.研究了表面改性处理和木粉粒径对复合材料力学强度的影响.结果表明,相对于未改性的木粉,用硅烷偶联剂处理的木粉对不饱和聚酯树脂有更强的增强作用,添加量为20(wt)%的MW/UPR复合材料的拉伸强度比纯UPR提高74.4%,...  相似文献   

14.
采用硅烷偶联剂(A-174)偶联、高锰酸钾接枝和乙酰化包覆等3种方法对香蕉纤维进行表面改性,制备了改性香蕉纤维增强环氧树脂复合材料,测试其拉伸、弯曲、压缩、冲击等力学性能。结果表明,偶联、接枝、包覆等表面改性均能明显改善香蕉纤维与基体树脂的相容性,提高复合材料的力学性能,其中偶联改性的效果最好。当改性香蕉纤维含量为10wt%时,与未改性的香蕉纤维比较,复合材料的拉伸强度、弯曲强度、压缩强度分别提高了1.8、1.0、2.6倍;随着纤维含量的增加,复合材料的力学性能明显提高。  相似文献   

15.
几种加工助剂在聚丙烯基木塑复合材料中的应用对比   总被引:1,自引:0,他引:1  
研究了3种加工助剂对聚丙烯(PP)基木塑复合材料物理力学性能和加工性能的影响,并利用扫描电子显微镜对复合材料的冲击断面进行了分析。结果表明,在一定用量范围内,芳香族碳氢化合物(S-105)和改性烷基酚醛树脂(TKM-M80)能够提高木粉在PP基体中的分散性,改善基体与木粉之间的相容性,从而提高PP基木塑复合材料的拉伸强度、冲击强度、弯曲强度、弯曲弹性模量和加工性能;脂肪醇和脂肪酸酯的混合物(Deoflow A)能够明显提高木粉在PP基体中的分散性和复合材料的加工性能,但用量较大时对复合材料的拉伸强度、弯曲强度和弯曲弹性模量有不利影响。  相似文献   

16.
This paper presents a novel process developed to manufacture poly(methyl methacrylate) (PMMA) pultruded composite. The mechanical, thermal, and dynamic mechanical properties, environmental effect, postformability of various fiber (glass, carbon, and Kevlar 49 aramid fiber) reinforced pultruded PMMA composites have been studied. Results show mechanical properties (i.e., tensile strength, specific tensile strength, tensile modulus, and specific flexural strength) and thermal properties (HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest specific tensile strength and HDT, carbon fiber/PMMA composites show the highest tensile strength and tensile modulus, and glass fiber/PMMA composites show the highest specific flexural strength. Pultruded glass-fiber-reinforced PMMA composites exhibit good weather resistance. These composite materials can be postformed by thermoforming under pressure, and mechanical properties of postformed products can be improved. The dynamic shear storage and loss modulus (G′, G″) of pultruded glass-fiber-reinforced PMMA composites increased with decreasing pulling rate, and their shear storage moduli are higher than those of pultruded Nylon 6 and polyester composites.  相似文献   

17.
对Al(OH)3阻燃的高密度聚乙烯/木粉复合材料研究结果表明:随木粉和Al(OH)3添加量的增加,Al(OH)3对复合材料的阻燃效率增加,高木粉添加量的复合材料氧指数达27.1%,Al(OH)3的阻燃效率达0.203。增加木粉含量,复合材料的拉伸强度和弯曲强度明显提高;但Al(OH)3对拉伸强度的影响不大,而明显提高弯曲强度。增加木粉和Al(OH)3的含量,均能明显降低复合材料的冲击强度,破坏复合材料的韧性。  相似文献   

18.
Major limitation for use of epoxy thermosets in engineering applications is its sudden brittle failure. In the present study dipropylene glycol dibenzoate (DPGDB) based plasticizer is used to modify diglycidyl ether of bisphenol A (DEGEBA) based epoxy resin system via simple blending technique. Bio-based epoxidized linseed oil was also used to modify epoxy resin system and compared with DPGDB modified resin. For DPGDB modified resin storage modulus and loss modulus of the epoxy system modified with 10% plasticizer increased by 7.54% and 12.24%, respectively. The primary mechanism responsible for such behavior is improved crosslinking density. With 5% plasticizer loading, flexural strength increased by 21%. There was an improvement of 312.74% in strain at failure for 10% plasticizer loading, while preserving its mechanical strength. It was found that DPGDB based modification was better than epoxidized linseed oil modification.  相似文献   

19.
将动态硫化技术应用于热塑性树脂/填料/热固性树脂复合体系,制备了动态固化聚丙烯(PP)/马来酸酐接枝PP(PP-g-MAH)/滑石粉(Talc)/环氧树脂(EP)复合材料。研究了动态固化PP/PP-g-MAH/Talc/EP复合材料的界面作用、形态结构、力学性能以及热稳定性。实验结果表明:PP/PP-g—MAH的加入,可明显增加PP/Talc复合材料的界面作用。在动态固化PP/PP-g-MAH/Talc/EP复合材料中,PP和Talc两相界面更加模糊,动态固化EP进一步增加了PP和Talc间的界面作用。当EP的用量超过5份时,部分EP呈颗粒状分布在PP基体中。与PP/PP-g-MAH/Talc/EP和PP/PP-MAH-Talc/EP复合材料相比,动态固化PP/PP-g-MAH/Talc/EP复合材料的冲击强度、拉伸强度和弯曲模量均有明显提高。当EP用量超过5份时,复合材料的冲击强度和断裂伸长率明显降低,但拉伸强度和弯曲模量继续增加。热分析表明动态固化PP/PP-g-MAH/Talc/EP复合材料具有较高的热稳定性。  相似文献   

20.
空心玻璃微珠填充环氧树脂复合材料压缩性能研究   总被引:2,自引:0,他引:2  
制备了空心玻璃微珠 (HGM )填充环氧树脂复合材料 ,对材料进行了单轴静态压缩实验。研究了HGM的粒径和体积分数 (Vf)对材料压缩性能的影响 ,研究发现 ,Vf增大 ,材料中HGM外部空气泡的含量增大 ;材料的压缩强度和压缩模量可在 5 0~ 10 0MPa和 1.5 0~ 1.80GPa之间调节 ;材料断裂应变较小 ,用扫描电镜观察了其结构形态和破坏形式 ,断裂面与应力方向约成 45°角 ,破坏主要由HGM的破裂引起 ;HGM粒径减小 ,材料压缩强度增大 ;Vf 增大 ,压缩强度减小 ,压缩模量先增大后减小 ,断裂应变减小。用改进Turcsanyi方程对压缩强度进行了模拟计算 ,材料的密度与计算值基本一致  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号