首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
In this paper, we present a hierarchical optimization method for finding feasible true 0–1 solutions to finite‐element‐based topology design problems. The topology design problems are initially modelled as non‐convex mixed 0–1 programs. The hierarchical optimization method is applied to the problem of minimizing the weight of a structure subject to displacement and local design‐dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered. The non‐convex topology design problems are equivalently reformulated as convex all‐quadratic mixed 0–1 programs. This reformulation enables the use of methods from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The paper presents a gradient‐based topology optimization formulation that allows to solve acoustic–structure (vibro‐acoustic) interaction problems without explicit boundary interface representation. In acoustic–structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface‐coupling integrals, however, such a formulation does not allow for free material re‐distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u /p‐formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two‐dimensional acoustic–structure problems are optimized in order to verify the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We present a versatile high‐level programming‐language implementation of non‐linear topology optimization. Our implementation is based on the commercial software package FEMLAB, and it allows a wide range of optimization objectives to be dealt with easily. We exemplify our method by studies of steady‐state Navier–Stokes flow problems, thus extending the work by Borrvall and Petersson on topology optimization of fluids in Stokes flow (Int. J. Num. Meth. Fluids 2003; 41 :77–107). We analyse the physical aspects of the solutions and how they are affected by different parameters of the optimization algorithm. A complete example of our implementation is included as FEMLAB code in an appendix. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper deals with topology optimization of load‐carrying structures defined on discretized continuum design domains. In particular, the minimum compliance problem with stress constraints is considered. The finite element method is used to discretize the design domain into n finite elements and the design of a certain structure is represented by an n‐dimensional binary design variable vector. In order to solve the problems, the binary constraints on the design variables are initially relaxed and the problems are solved with both the method of moving asymptotes and the sparse non‐linear optimizer solvers for continuous optimization in order to compare the two solvers. By solving a sequence of problems with a sequentially lower limit on the amount of grey allowed, designs that are close to ‘black‐and‐white’ are obtained. In order to get locally optimal solutions that are purely {0, 1}n, a sequential linear integer programming method is applied as a post‐processor. Numerical results are presented for some different test problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We consider equivalent reformulations of nonlinear mixed 0–1 optimization problems arising from a broad range of recent applications of topology optimization for the design of continuum structures and composite materials. We show that the considered problems can equivalently be cast as either linear or convex quadratic mixed 0–1 programs. The reformulations provide new insight into the structure of the problems and may provide a foundation for the development of new methods and heuristics for solving topology optimization problems. The applications considered are maximum stiffness design of structures subjected to static or periodic loads, design of composite materials with prescribed homogenized properties using the inverse homogenization approach, optimization of fluids in Stokes flow, design of band gap structures, and multi-physics problems involving coupled steady-state heat conduction and linear elasticity. Several numerical examples of maximum stiffness design of truss structures are presented. The research is funded by the Danish Natural Science Research Council and the Danish Research Council for Technology and Production Sciences.  相似文献   

6.
Genetic algorithms (GAs) have become a popular optimization tool for many areas of research and topology optimization an effective design tool for obtaining efficient and lighter structures. In this paper, a versatile, robust and enhanced GA is proposed for structural topology optimization by using problem‐specific knowledge. The original discrete black‐and‐white (0–1) problem is directly solved by using a bit‐array representation method. To address the related pronounced connectivity issue effectively, the four‐neighbourhood connectivity is used to suppress the occurrence of checkerboard patterns. A simpler version of the perimeter control approach is developed to obtain a well‐posed problem and the total number of hinges of each individual is explicitly penalized to achieve a hinge‐free design. To handle the problem of representation degeneracy effectively, a recessive gene technique is applied to viable topologies while unusable topologies are penalized in a hierarchical manner. An efficient FEM‐based function evaluation method is developed to reduce the computational cost. A dynamic penalty method is presented for the GA to convert the constrained optimization problem into an unconstrained problem without the possible degeneracy. With all these enhancements and appropriate choice of the GA operators, the present GA can achieve significant improvements in evolving into near‐optimum solutions and viable topologies with checkerboard free, mesh independent and hinge‐free characteristics. Numerical results show that the present GA can be more efficient and robust than the conventional GAs in solving the structural topology optimization problems of minimum compliance design, minimum weight design and optimal compliant mechanisms design. It is suggested that the present enhanced GA using problem‐specific knowledge can be a powerful global search tool for structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A methodology for imposing a minimum length scale on structural members in discretized topology optimization problems is described. Nodal variables are implemented as the design variables and are projected onto element space to determine the element volume fractions that traditionally define topology. The projection is made via mesh independent functions that are based upon the minimum length scale. A simple linear projection scheme and a non‐linear scheme using a regularized Heaviside step function to achieve nearly 0–1 solutions are examined. The new approach is demonstrated on the minimum compliance problem and the popular SIMP method is used to penalize the stiffness of intermediate volume fraction elements. Solutions are shown to meet user‐defined length scale criterion without additional constraints, penalty functions or sensitivity filters. No instances of mesh dependence or checkerboard patterns have been observed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A new methodology is proposed for the topology optimization of fluid in Stokes flow. The binary design variable and no‐slip condition along the solid–fluid interface are regularized to allow for the use of continuous mathematical programming techniques. The regularization is achieved by treating the solid phase of the topology as a porous medium with flow governed by Darcy's law. Fluid flow throughout the design domain is then expressed as a single system of equations created by combining and scaling the Stokes and Darcy equations. The mixed formulation of the new Darcy–Stokes system is solved numerically using existing stabilized finite element methods for the individual flow problems. Convergence to the no‐slip condition is demonstrated by assigning a low permeability to solid phase and results suggest that auxiliary boundary conditions along the solid–fluid interface are not needed. The optimization objective considered is to minimize dissipated power and the technique is used to solve examples previously examined in literature. The advantages of the Darcy–Stokes approach include that it uses existing stabilization techniques to solve the finite element problem, it produces 0–1 (void–solid) topologies (i.e. there are no regions of artificial material), and that it can potentially be used to optimize the layout of a microscopically porous material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
 Simultaneous optimization with respect to the structural topology, actuator locations and control parameters of an actively controlled plate structure is investigated in this paper. The system consists of a clamped-free plate, a H 2 controller and four surface-bonded piezoelectric actuators utilized for suppressing the bending and torsional vibrations induced by external disturbances. The plate is represented by a rectangular design domain which is discretized by a regular finite element mesh and for each element the parameter indicating the presence or absence of material is used as a topology design variable. Due to the unavailability of large-scale 0–1 optimization algorithms, the binary variables of the original topology design problem are relaxed so that they can take all values between 0 and 1. The popular techniques in the topology optimization area including penalization, filtering and perimeter restriction are also used to suppress numerical problems such as intermediate thickness, checkerboards, and mesh dependence. Moreover, since it is not efficient to treat the structural and control design variables equally within the same framework, a nested solving approach is adopted in which the controller syntheses are considered as sub processes included in the main optimization process dealing with the structural topology and actuator locations. The structural and actuator variables are solved in the main optimization by the method of moving asymptotes, while the control parameters are designed in the sub optimization processes by solving the Ricatti equations. Numerical examples show that the approach used in this paper can produce systems with clear structural topology and high control performance. Received 16 November 2001 / Accepted 26 February 2002  相似文献   

10.
Bilateral filtering for structural topology optimization   总被引:1,自引:0,他引:1  
Filtering has been a major approach used in the homogenization‐based methods for structural topology optimization to suppress the checkerboard pattern and relieve the numerical instabilities. In this paper a bilateral filtering technique originally developed in image processing is presented as an efficient approach to regularizing the topology optimization problem. A non‐linear bilateral filtering process leads to a suitable problem regularization to eliminate the checkerboard instability, pronounced edge preserving smoothing characteristics to favour the 0–1 convergence of the mass distribution, and computational efficiency due to its single pass and non‐iterative nature. Thus, we show that the application of the bilateral filtering brings more desirable effects of checkerboard‐free, mesh independence, crisp boundary, computational efficiency and conceptual simplicity. The proposed bilateral technique has a close relationship with the conventional domain filtering and range filtering. The proposed method is implemented in the framework of a power‐law approach based on the optimality criteria and illustrated with 2D examples of minimum compliance design that has been extensively studied in the recent literature of topology optimization and its efficiency and accuracy are highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A non‐gradient‐based approach for topology optimization using a genetic algorithm is proposed in this paper. The genetic algorithm used in this paper is assisted by the Kriging surrogate model to reduce computational cost required for function evaluation. To validate the non‐gradient‐based topology optimization method in flow problems, this research focuses on two single‐objective optimization problems, where the objective functions are to minimize pressure loss and to maximize heat transfer of flow channels, and one multi‐objective optimization problem, which combines earlier two single‐objective optimization problems. The shape of flow channels is represented by the level set function. The pressure loss and the heat transfer performance of the channels are evaluated by the Building‐Cube Method code, which is a Cartesian‐mesh CFD solver. The proposed method resulted in an agreement with previous study in the single‐objective problems in its topology and achieved global exploration of non‐dominated solutions in the multi‐objective problems. © 2016 The Authors International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd  相似文献   

12.
We present an alternative topology optimization formulation capable of handling the presence of stress constraints in a straightforward fashion. The main idea is to adopt a mixed finite‐element discretization scheme wherein not only displacements (as usual) but also stresses are the variables entering the formulation. By doing so, any stress constraint may be handled within the optimization procedure without resorting to post‐processing operation typical of displacement‐based techniques that may also cause a loss in accuracy in stress computation if no smoothing of the stress is performed. Two dual variational principles of Hellinger–Reissner type are presented in continuous and discrete form that, which included in a rather general topology optimization problem in the presence of stress constraints that is solved by the method of moving asymptotes (Int. J. Numer. Meth. Engng. 1984; 24 (3):359–373). Extensive numerical simulations are performed and ongoing extensions outlined, including the optimization of elastoplastic and incompressible media. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a level‐set‐based topology optimization method based on numerically consistent sensitivity analysis. The proposed method uses a direct steepest‐descent update of the design variables in a level‐set method; the level‐set nodal values. An exact Heaviside formulation is used to relate the level‐set function to element densities. The level‐set function is not required to be a signed‐distance function, and reinitialization is not necessary. Using this approach, level‐set‐based topology optimization problems can be solved consistently and multiple constraints treated simultaneously. The proposed method leads to more insight in the nature of level‐set‐based topology optimization problems. The level‐set‐based design parametrization can describe gray areas and numerical hinges. Consistency causes results to contain these numerical artifacts. We demonstrate that alternative parameterizations, level‐set‐based or density‐based regularization can be used to avoid artifacts in the final results. The effectiveness of the proposed method is demonstrated using several benchmark problems. The capability to treat multiple constraints shows the potential of the method. Furthermore, due to the consistency, the optimizer can run into local minima; a fundamental difficulty of level‐set‐based topology optimization. More advanced optimization strategies and more efficient optimizers may increase the performance in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The paper introduces a novel multiresolution scheme to topology optimization in the framework of the isogeometric analysis. A new variable parameter space is added to implement multiresolution topology optimization based on the Solid Isotropic Material with Penalization approach. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B‐spline basis functions, which are easily obtained using k‐refinement strategy in the isogeometric analysis. While the nonuniform rational B‐spline basis functions are used to exactly describe geometric domains and approximate unknown solutions in finite element analysis. By applying a refined sensitivity filter, optimized designs include highly discrete solutions in terms of solid and void materials without using any black and white projection filters. The Method of Moving Asymptotes is used to solve the optimization problem. Various benchmark test problems including plane stress, compliant mechanism inverter, and 2‐dimensional heat conduction are examined to demonstrate the effectiveness and robustness of the present method.  相似文献   

15.
In multi‐objective optimization, a design is defined to beit pareto‐optimal if no other design exists that is better with respect to one objective, and as good with respect to other objectives. In this paper, we first show that if a topology is pareto‐optimal, then it must satisfy certain properties associated with the topological sensitivity field, i.e. no further comparison is necessary. This, in turn, leads to a deterministic, i.e. non‐stochastic, method for efficiently generating pareto‐optimal topologies using the classic fixed‐point iteration scheme. The proposed method is illustrated, and compared against SIMP‐based methods, through numerical examples. In this paper, the proposed method of generating pareto‐optimal topologies is limited to bi‐objective optimization, namely compliance–volume and compliance–compliance. The future work will focus on extending the method to non‐compliance and higher dimensional pareto optimization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we use binary level set method and Merriman–Bence–Osher scheme for solving structural shape and topology optimization problems. In the binary level set method, the level set function can only take 1 and –1 values at convergence. Thus, it is related to phasefield methods. There is no need to solve the Hamilton–Jacobi equation so it is free of the CFL condition and the reinitialization scheme. This favorable property leads to the great time advantage of this method. We use additive operator splitting (AOS) and multiplicative operator splitting (MOS) schemes for solving optimization problems under some constraints In this work, we also combine the binary level set method with the Merriman–Bence–Osher scheme. The combined scheme is much more efficient than the conventional binary level set method. Several two‐dimensional examples are presented which demonstrate the effectiveness and robustness of proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Level set topology optimization of fluids in Stokes flow   总被引:1,自引:0,他引:1  
We propose the level set method of topology optimization as a viable, robust and efficient alternative to density‐based approaches in the setting of fluid flow. The proposed algorithm maintains the discrete nature of the optimization problem throughout the optimization process, leading to significant advantages over density‐based topology optimization algorithms. Specifically, the no‐slip boundary condition is implemented directly—this is accurate, removes the need for interpolation schemes and continuation methods, and gives significant computational savings by only requiring flow to be modeled in fluid regions. Topological sensitivity information is utilized to give a robust algorithm in two dimensions and familiar two‐dimensional power dissipation minimization problems are solved successfully. Computational efficiency of the algorithm is also clearly demonstrated on large‐scale three‐dimensional problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The objective of the present study is to show that the numerical instability characterized by checkerboard patterns can be completely controlled when non‐conforming four‐node finite elements are employed. Since the convergence of the non‐conforming finite element is independent of the Lamé parameters, the stiffness of the non‐conforming element exhibits correct limiting behaviour, which is desirable in prohibiting the unwanted formation of checkerboards in topology optimization. We employ the homogenization method to show the checkerboard‐free property of the non‐conforming element in topology optimization problems and verify it with three typical optimization examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号