首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Amphiphilic amino‐bearing biodegradable copolymers, [methoxy‐poly(ethylene glycol)]‐block‐poly[(L ‐lactide)‐co‐(serinol carbonate)] (mPEG‐block‐P(LA‐co‐CA)), are prepared by synthesizing amino‐bearing cyclic carbonate monomer N‐benzoxycarbonylserinol carbonate (CAB) starting from serinol, by ring‐opening polymerization of L ‐lactide and CAB using diethylzinc as catalyst and mPEG as macroinitiator, and by subsequent removal of the protective benzyloxycarbonyl groups by HBr treatment. After deprotection, the pendant amino groups on the carbonate units are reacted with N‐hydroxylsuccinimide‐activated folic acid (FA) to achieve mPEG‐block‐P(LA‐co‐CA/FA) conjugate and with fluorescein isothiocyanate (FITC) to achieve mPEG‐block‐P(LA‐co‐CA/FITC) conjugate. The structures of mPEG‐block‐P(LA‐co‐CAB), mPEG‐block‐P(LA‐co‐CA), mPEG‐block‐P(LA‐co‐CA/FA) and mPEG‐block‐P(LA‐co‐CA/FITC) are confirmed using 1H NMR and Fourier transform infrared spectroscopy. The block copolymers can self‐assemble into micelles in aqueous solution. Because of the functionality of FA and FITC, these copolymers can find important applications in drug delivery systems to serve as targeting moieties and fluorescent probes. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
A diblcok copolymer monomethoxy poly (ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylene carbonate) (MPEG‐b‐P(LA‐co‐MCC)) was obtained by copolymerization of L ‐lactide (LA) and 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG‐b‐P(LA‐co‐MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine‐glycine‐aspartic acid (RGD), respectively. 1H‐NMR spectra confirmed the structure of the copolymer MPEG‐b‐P(LA‐co‐MCC/docetaxel) and MPEG‐b‐P(LA‐co‐MCC/RGD). In vitro antitumor assay indicates that the MPEG‐b‐P(LA‐co‐MCC/docetaxel) conjugate shows high cytotoxic activity against HeLa cancer cells. Cell adhesion and spreading experiment shows that copolymer MPEG‐b‐P(LA‐co‐MCC/RGD) is of benefit to cell adherence and is a promising biodegradable material for cell and tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The optimal synthetic conditions of poly(lactic acid‐co‐glycolic acid) (PLGA) via melt copolycondensation directly from L ‐lactic acid (L ‐LA) and glycolic acid (GA) with a feed molar ratio of 50/50 are discussed; the important drug‐delivery carrier PLGA50/50 is used as a special example. With reaction conditions of 165°C and 70 Pa and with 0.5 wt % SnCl2 as the catalyst, 10 h of polymerization gave the L ‐PLGA50/50 with the biggest intrinsic viscosity ([η]), 0.1993 dL/g. The optimal synthetic conditions were verified by the synthesis of D,L ‐PLGA50/50 with D,L ‐lactic acid (D,L ‐LA) instead of L ‐LA, but the biggest [η] was 0.2382 dL/g. Under the same synthetic conditions with L ‐LA and D,L ‐LA as starting materials, serial PLGA with different molar feed ratios, including 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, and 0/100, were synthesized via simple and practical direct melt copolycondensation, and their solubilities were investigated. When the glycolic acid feed molar percentage was equal to or more than 70%, solubilities in tetrahydrofuran and CHCl3 became worse, and some samples were even wholly insoluble. These biodegradable polymers were also systematically characterized with gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry, and X‐ray diffraction. PLGA synthesized from L ‐LA and D,L ‐LA had many differences in weight‐average molecular weight (Mw), glass‐transition temperature, crystallinity, and composition. When the molar feed ratio of LA to GA was 50/50, both the [η] and Mw values of D,L ‐PLGA were higher than those of L ‐PLGA. With D,L ‐LA as the starting material, the structure of the PLGA copolymer was relatively simple, and its properties were apt to be controlled by its GA chain segment. When the feed molar percentage of the monomer (LA or GA) was more than or equal to 90%, the copolymer was apt to be crystalline, and the aptness was more obvious for the L ‐LA monomer. The composition percentage of GA in PLGA was not only higher than the feed molar percentage of GA, but also, the GA percentage in D,L ‐PLGA was higher than in L ‐PLGA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 244–252, 2006  相似文献   

4.
In this work, porous structures of poly(l ‐lactic acid)‐co‐(tri‐methylene‐carbonate) (PLLA‐co‐TMC) were successfully fabricated using two experimental methods, that is, using supercritical CO2 as antisolvent and as foaming agent through the pressure induced phase separation technique. Considering the phase inversion method, the effect of the initial polymer concentration of the solution, pressure, and temperature on the morphology of the final porous structure (pore size, porosity, and cell density) was investigated. The L–L demixing process was suggested as the dominant mechanism for the phase separation and pore production. The temperature window, for which PLLA‐co‐TMC porous structures are successfully produced using the pressure induced phase separation technique, was determined at 150 and 210 bar. The effect of temperature on the final porous structure was investigated. POLYM. ENG. SCI., 57:1005–1015, 2017. © 2016 Society of Plastics Engineers  相似文献   

5.
The polycarbonate copolymers poly[trimethylene carbonate‐co‐2‐phenyl‐5,5‐bis(hydroxymethyl) trimethylene carbonate] [P(TMC‐co‐PTC)] were synthesized by the ring‐opening polymerization of trimethylene carbonate (TMC) and 2‐phenyl‐5,5‐bis(hydroxymethyl) trimethylene carbonate (PTC) with tin(II) 2‐ethylhexanoate and aluminum isopropoxide as the catalysts. These copolymers were further reduced by a palladium/carbonate (Pd/C; 10%) catalyst to produce partly deprotected copolymers. These two types of copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, UV spectroscopy, gel permeation chromatography, differential scanning calorimetry, and an automatic contact angle meter. The influences of the feed molar ratio of the monomers, the catalyst concentration, the reaction time, and the reaction temperature on the copolymerization process were also studied. The copolymerization of the TMC and PTC monomers was a nonideal copolymerization, and the copolymerization reactivity ratio of TMC was higher than that of PTC. In vitro degradation tests indicated that the partly deprotected copolymers possessed faster degradation rates and more hydrophilicity than the corresponding unreduced copolymers. Moreover, the degradation of these two type copolymers increased when the pH value of the buffer solutions decreased. In vitro drug‐release experiments showed that these two types of copolymers had steady drug‐release rates and good controlled release properties. Moreover, the partly deprotected copolymers had faster drug‐release rates than the corresponding unreduced copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
High molecular weight terpolymers based on L ‐lactide (LLA), trimethylene carbonate (TMC) and glycolide (GA) are synthesized and characterized with the aim of assessing their potential in the development of bioresorbable cardiovascular stents. The effect of the composition on the thermal and mechanical properties of terpolymers is investigated in comparison with the corresponding PLLA‐TMC copolymers as well as a PLLA homopolymer. Incorporation of GA units strongly decreases the crystallinity of PLLA‐TMC‐GA terpolymers due to its more random microstructure as evidenced by 13C NMR. Meanwhile, the toughness is greatly improved, with only a slight loss of tensile strength. Plasma‐treated poly[(L ‐lactide)‐co‐glycolide] (PLGA) fibers are used to reinforce the terpolymer matrix. Composite with 8 wt% fibers exhibits much higher tensile strength and modulus. A minitube is fabricated using a single‐screw extruder, and a stent prototype is successfully manufactured from a terpolymer by a CNC engraving machine, thus showing the feasibility of the terpolymers for the development of bioresorbable cardiovascular stents. POLYM. ENG. SCI., 54:1418–1426, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
A two‐step direct melt copolymerization process of l ‐lactic acid (L ‐LA)/glycolic acid (GA) was developed: poly(l ‐lactic acid) (PLLA) and poly(glycolic acid) (PGA) with different molecular weight was first synthesized respectively by binary catalyst (tin chloride/p‐toluenesulfonic or tin chloride); and then poly(l ‐lactic‐co‐glycolic acid) (b‐PLGA) was produced by melt polymerization of the as‐prepared PLLA and PGA, wherein the composition and chain structure of b‐PLGA copolymers could be controlled by the molecular weight of PLLA. The chain structure and thermal properties of copolymers were studied by Wide‐angle X‐ray diffraction, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. In comparison with the random PLGA (r‐PLGA) synthesized by one‐step direct melt polymerization, the average l ‐lactic blocks length (LLA) in b‐PLGA was longer while the average glycolic blocks length (LGA) in b‐PLGA was shorter which further resulted in the improved crystallinity and thermostability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41566.  相似文献   

8.
Poly(dimethyl trimethylene carbonate) (PDTC) and poly(trimethylene carbonate) (PTMC) were synthesized by ring‐opening polymerization (ROP) of dimethly trimethylene carbonate (DTC) and trimethylene carbonate (TMC) in the presence of five kinds of natural amino acids (L ‐alanine, L ‐valine, L ‐leucine, L ‐proline, and L ‐phenylalanine). PDTCs with number‐average molecular weight (Mn) from 6700 to 18,900 g/mol and PTMCs with Mn from 7200 to 17,800 g/mol were obtained at a feed ratio of [monomer]/[L ‐phenylalanine] ranging from 50 to 200. The results of 1H nuclear magnetic resonance and titration proved amino acid connecting onto the polymer backbone. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Stereocomplex crystals of polylactide and graphene oxide (GO) were simultaneously used to regulate the mechanical properties and heat resistance of a poly(l ‐lactide‐co‐trimethylene carbonate) [P(LLA‐co‐TMC)] copolymer. The crystallization behaviors in the nonisothermal cold‐crystallization process of P(LLA‐co‐TMC)–poly(d ‐lactide) (PDLA) blends and P(LLA‐co‐TMC)–PDLA–GO composites were investigated by differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. Data from the crystallization kinetics and the crystallization active energy indicated that GO both promoted nucleation and limited growth during the stereocomplex crystallization process. Three kind of samples (without crystallization, with low crystallinity, and with high crystallinity) were used to investigate the mechanical properties and heat resistance. We found a decrease in the elongation at break when the stereocomplex crystal and GO contents were increased, and this was accompanied by an improvement in the tensile strength. The change in the storage modulus value determined by dynamic mechanical analysis demonstrated that both the stereocomplex crystal and GO effectively improved the heat resistance. These results indicate that this study provided a new strategy for fabricating a P(LLA‐co‐TMC) copolymer with good comprehensive properties at was entirely different from common chemical crosslinking methods. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45248.  相似文献   

10.
The copolymerization of ethylene and 1,7‐octadiene was carried out to synthesize polyethylene with unreacted vinyl groups. The prepared copolymer [poly (ethylene‐co‐1,7‐octadiene) (PEOD)] was epoxidized with peracetic acid, m‐chloroperbenzoic acid, or formic acid/H2O2. Of these, peracetic acid gave the best results. Epoxidized PEOD was subjected to a reaction with 2‐mercaptobenzimidazole and poly(L ‐lactic acid). The bromination of PEOD was also performed in the presence of a Br2/HBr solution at room temperature. The brominated poly(ethylene‐co‐1,7‐octadiene) (PEOD‐Br) was used as a macroinitiator for atom transfer radical polymerization. The polymerization of styrene, butyl methacrylate, and glycidyl methacrylate was performed in bulk or solution at 120°C with a PEOD‐Br/CuBr/2,2′‐dipyridyl initiator system. The thermal properties of the graft copolymers and the efficiency of the graft polymerization were investigated. These graft copolymers have potential applications as interfacial modifiers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Ring‐opening polymerization of L ‐ or D ‐lactide was realized at 140 °C for a period of 7 days in the presence of dihydroxyl poly(ethylene glycol) (PEG), with M?n = 4000 g mol?1, using zinc lactate as initiator. The resulting poly(L ‐lactide)–PEG–poly(L ‐lactide) and poly(D ‐lactide)–PEG–poly(D ‐lactide) triblock copolymers are water soluble with polylactide (PLA) block length ranging from 11 to 17 units. Both the tube inverting method and rheological measurements were used to evaluate the gelation properties of aqueous solutions containing single copolymers or L /D copolymer pairs. Stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks is observed for mixed solutions. Hydrogel formation is detected in the case of relatively long PLA blocks (DP PLA = 17), but not for copolymers with shorter PLA blocks (DP PLA = 11–13) due to partial racemization of L ‐lactyl units. Racemization is largely reduced when the reaction time is shortened to 1 day. Under these conditions, DP PLA of 8 is sufficient for the stereocomplexation of PLA–PEG block copolymers, and DP PLA above 10 leads to the formation of hydrogels of PLA–PEG block copolymers. On the other hand, racemization appears as a general phenomenon in the (co)polymerization of L ‐lactide with Zn(Lac)2 as initiator, although it is negligible or undetectable in the case of high molar mass polymers. Therefore, racemization is the limiting factor for the stereocomplexation‐induced gelation of water‐soluble PLA–PEG block copolymers where the PLA block length generally ranges from 10 to 30. Reaction conditions including initiator, time and temperature should be strictly controlled to minimize racemization. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
Using D ,L ‐lactic acid (LA) and multifunctional group compound triethanolamine (TEA) as starting materials, a novel biodegradable material poly(D ,L ‐lactic acid‐triethanolamine) [P(LA‐TEA)] was directly synthesized by simpler and practical melt polycondensation. The appropriate synthetic condition was discussed in detail. When the molar feed ratio LA/TEA was 30/1, the optimal synthesis conditions were as follows: a prepolymerization time of 12 h; 0.5 weight percent (wt %) SnO catalyst; and melt copolycondensation for 8 h at 160°C, which gave a novel star‐shaped poly(D,L ‐lactic acid) (PDLLA) modified by TEA with the maximum intrinsic viscosity [η] 0.93 dL g−1. The copolymer P(LA‐TEA) as a different molar feed ratio was characterized by [η], Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H‐NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD). Increasing the molar feed ratio of LA/TEA, Tg and Mw increased. However, all copolymers were amorphous, and their Tg (12.2°C–32.5°C) were lower than that of homopolymer PDLLA. The biggest Mw was 9400 Da, which made the biodegradable polymer be potentially used as drug delivery carrier, tissue engineering material, and green finishing agent in textile industry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A series of hyperbranched poly(amine‐ester)‐co‐D ,L ‐lactide (HPAE‐co‐PLA) copolymer were synthesized by ring‐opening polymerization of D ,L ‐lactide with Sn(Oct)2 as catalyst to a fourth generation branched poly(amine‐ester) (HPAE‐OHs4). The chemical structures of copolymers were determined by FTIR, 1H‐NMR, 13C‐NMR, and TGA. Double emulsion (DE) and nanoprecipitation (NP) method were used to fabricate the nanoparticles of these copolymers encapsulating bovine serum albumin (BSA) as a model. DSC thermo‐grams indicated that the nanoparticles with BSA kept stable below 40°C. Different factors which influence on particular size and encapsulation efficiency (EE) were investigated. Their EE to BSA could reach 97.8% at an available condition. In vitro release behavior of NPs showed a continuous release after a burst release. The stability maintenance of BSA in the nanoparticle release in vitro was also measured via circular dichroism and fluorescence spectrometry. The results showed that the copolymer nanoparticles have a promising potential in protein delivery system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Amphiphilic polycarbonate copolymers including methoxy‐terminated poly(ethylene glycol)‐co‐poly (5,5‐dimethyl trimethylene carbonate) [Poly(PEG‐b‐TMC)] and poly(ethylene glycol)‐co‐poly(trimethylene carbonate) [Poly(PEG‐b‐DTC)] were synthesized. The water‐in‐oil‐in‐water (W/O/W) solvent evaporation technique was adopted to produce anticancer magnetic Poly(PEG‐b‐DTC) microspheres containing tumor necrosis factor‐α (TNF‐α) genes and Fe3O4 magnetic ultrafine powder. Drug release studies showed that the microspheres can sustain a steady release rate of TNF‐α genes in 0.1M phosphate buffer saline solution in vitro for up to 60 h. In vitro cytotoxicity assays demonstrated that the microspheres have high inhibition and antitumor action to human hepatocellular carcinoma (Bel‐7204) cells in vitro. In vivo inhibition on the growth of hepatic carcinomas and histopathologic observation indicated that the microspheres possess a markedly high antitumor activity to human hepatocellular carcinoma (Bel‐7204). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A series of aliphatic poly(carbonate‐co‐phosphate)s was synthesized in bulk using aluminium isopropoxide as initiator by ring‐opening polymerization with various cyclic carbonates (trimethylene carbonate (TMC) and 5,5‐dimethyltrimethylene carbonate (DTC)) and cyclic phosphates (ethylene ethyl phosphate (EEP), ethylene isobutyl phosphate (EIBP), ethylene lauryl phosphate (ELP) and ethylene stearyl phosphate (ESP)). The influence of reaction conditions such as polymerization time, polymerization temperature and initiator concentration on the yield and molecular weight were investigated. The substituent effect of the cyclic monomers on the polymerization was also studied, and the results indicate that the substituents exert a marked influence on the molecular weight of the copolymers obtained. The comonomer reactivity ratios were determined (TMC 0.88 and EEP 1.17). The copolymers with backbone chains rich in phosphate content exhibit better hydrophilicity than that of TMC homopolymer, and the degradation rate of the copolymers increases with the increase of phosphate content therein. © 2001 Society of Chemical Industry  相似文献   

16.
L ‐Lactic acid (LA) was copolymerized with succinic acid (SA) and 1,4‐butenediol (1,4‐BED) in bulk state with titanium(IV) butoxide as a catalyst to produce poly(LA‐co‐SA‐co‐1,4‐BED) (PLASBED). Poly(L ‐lactic acid) (PLLA) homopolymer obtained from a direct condensation polymerization of LA had weight average molecular weight (Mw) less than 4.1 × 104 and was too brittle to prepare specimens for the tensile test. Addition of SA and 1,4‐BED to LA produced PLASB with Mw as high as 1.4 × 105 and exhibited tensile properties comparable to a commercially available high‐molecular‐weight PLLA. Chain extension by intermolecular linking reaction through the unsaturated 1,4‐BED units in PLASBED with benzoyl peroxide further increased the molecular weight and made PLASBED more ductile and flexible to show elongation at break as high as 450%. Biodegradability of PLASBED measured by the modified Sturm test was nearly independent of the 1,4‐BED content. Gel formation during the chain extension did not exert any significant influence on the biodegradability either. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1116–1121, 2005  相似文献   

17.
Directly starting from lactic acid (LA) and poly(ethylene glycol) (PEG), biodegradable material polylactic acid‐polyethylene glycol (PLEG) was synthesized via melt copolycondensation. The optimal synthetic conditions, including prepolymerization method, catalyst kinds and quantity, copolymerization temperature and time, LA stereochemical configuration, feed weight ratio mLA/mPEG and Mn of PEG, were all discussed in detail. When D ,L ‐LA and PEG (Mn = 1000 Da) prepolymerized together as feed weight ratio mD ,l‐LA/mPEG = 90/10, 15 h copolycondensation under 165°C and 70 Pa, and 0.5 wt % SnO as catalyst, gave D ,L ‐PLEG1000 with the highest [η] of 0.40 dL/g, and the corresponding MW was 41,700 Da. Using L ‐LA instead of D ,L ‐LA, 10 h polymerization under 165°C and 70 Pa, and 0.5 wt % SnO as catalyst, gave L ‐PLEG1000 with the highest [η] of 0.21 dL/g and MW of 15,600 Da. Serial D ,L ‐PLEG with different feed weight ratio and Mn of PEG were synthesized via the simple and practical direct melt copolycondensation, and characterized with FTIR, 1H NMR, GPC, DSC, XRD, and contact angle testing. D ,L ‐PELG not only had higher MW than PDLLA, PLLA and L ‐PELG, but also better hydrophilicity than PDLLA. The novel one‐step method could be an alternative route to the synthesis of hydrophilic drug delivery carrier PLEG instead of the traditional two‐step method using lactide as intermediate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 577–587, 2006  相似文献   

18.
Random copolymers of 2,2‐dimethyltrimethylene carbonate and ethylene carbonate (EC) were synthesized with lanthanide tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s [Ln(DBMP)3; Ln = La, Nd, Sm, or Dy] as catalysts, among which La(DBMP)3 showed the highest activity. Poly(2,2‐dimethyltrimethylene carbonate‐co‐ethylene carbonate)s [poly(DTC‐co‐EC)]s with high molecular weights were prepared at room temperature and characterized with 1H‐NMR and size exclusion chromatography. The thermal behavior and crystalline properties of the poly(DTC‐co‐EC)s were analyzed with differential scanning calorimetry, thermogravimetric analysis, and X‐ray diffraction. The crystallinity and melting temperatures of the poly(DTC‐co‐EC)s both decreased with increasing EC content in the copolymers. The mechanical properties of these copolymers were also investigated with dynamic mechanical analysis and tensile strength measurements, which revealed that a reduction of the glass‐transition temperature and great enhancement of the tensile properties could be achieved with higher EC contents. These improvements in the thermal and mechanical properties indicate potential applications in biomedical research for novel polycarbonates. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Poly(L ‐lactide‐co‐ε‐caprolactone)‐b‐poly(L ‐lactide) [P(LL‐co‐CL)‐b‐PLL] diblock copolyesters were synthesized in a two‐step process with 1‐dodecanol (DDC) and stannous octoate as the initiating system. In the first‐step reaction, a 50:50 mol % amorphous poly(L ‐lactide‐co‐ε‐caprolactone) [P(LL‐co‐CL)] copolyester was synthesized via the bulk copolymerization of L ‐lactide and ε‐caprolactone, which was followed by the polymerization of the PLL crystalline block at the end chain in the second‐step reaction. The yielded copolyesters were characterized with dilute‐solution viscometry, gel permeation chromatography, 1H‐ and 13C‐NMR, and differential scanning calorimetry methods. The molecular weights of the P(LL‐co‐CL) copolyesters from the first‐step reaction were controlled by the DDC concentrations, whereas in the second‐step reaction, the molecular weights of the P(LL‐co‐CL)‐b‐PLL diblock copolyesters depended on the starting P(LL‐co‐CL) copolyester molecular weights and L ‐lactide/prepolymer molar ratios. The starting P(LL‐co‐CL) copolyester molecular weights and PLL block lengths seemed to be the main factors affecting specific thermal properties, including the melting temperature (Tm), heat of melting (ΔHm), crystallizing temperature (Tc), and heat of crystallizing (ΔHc), of the final P(LL‐co‐CL)‐b‐PLL diblock copolyester products. Tm, ΔHm, Tc, and ΔHc increased when the PLL block lengths increased. However, these thermal properties of the diblock copolyesters also decreased when the P(LL‐co‐CL) block lengths increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
Novel copolymers consisting of poly(N‐isopropylaminoethyl‐co‐6‐hydroxyhexyl aspartamide) and poly (N‐isopropylaminoethyl‐co‐hexyl aspartamide) were prepared from polysuccinimide, which was the thermal polycondensation product of L ‐aspartic acid, via a ring‐opening reaction with 6‐amino‐L ‐hexanol (AH) or hexylamine (HA) and N‐isopropylethylenediamine at different ratios. The copolymers, containing 75–90 mol % of AH and 35–45 mol % of HA, produced thermoresponsive polymers through their lower critical solution temperatures (LCSTs) in aqueous solution. We could control the LCST could be controlled by modifying the hydrophobic–hydrophilic balance by changing the content of AH or HA. The pH dependencies of the LCST were opposite in these two different copolymer systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号