首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interest to ferrite nanoparticles (NPs) is thriving because of their unique applications in life industry. Doping of rubber composites by nanoparticles results in a novel characteristics which is not exist either in the ferrite or rubber alone. In this study, zinc ferrite NPs have been synthesized via sol–gel technique. These nanoferrites embedded into acrylonitrile butadiene rubber (NBR) at different concentrations. The morphology and structure of zinc ferrite and zinc ferrite NPs doped NBR were investigated using X‐ray diffraction and transmission electron microscopy. The influence of zinc ferrite NPs loading on the thermal stability showed that the zinc ferrite enhanced the thermal stability and reduced the rate of thermal degradation of rubber nanocomposites. The effect of zinc ferrite NPs on the mechanical properties of NBR showed that the hardness, tear strength, and tensile stress are improved. The magnetic measurements of these nanocomposites showed that the saturation magnetization is enhanced as the concentration of zinc ferrite NPs increased into NBR nanocomposites. The EPR spectra of zinc ferrite NPs doped NBR indicated that the increase in zinc ferrite NPs content resulted in an increase in the g‐factor and line width. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Acrylonitrile butadiene rubber (NBR)/bentonite (Bt) nanocomposites were synthesized by an one‐step method in NBR latex with (3‐Mercaptopropyl)trimethoxysilane (MPTMS) as a compatilizer. The nanocomposites were compounded with curing additives and then vulcanized. The prepared vulcanizates were characterized by Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD). The curing properties and mechanical properties were also investigated. The thermal properties were studied with thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology was investigated by field emission‐scanning electron microscopy (FE‐SEM). By swelling test, the swelling ratio and the crosslinking density were achieved. The hydrolyzation and condensation of MPTMS was identified by FTIR while the intercalated/exfoliated structure of Bt was determined by XRD. It was evident that the mechanical properties of the nanocomposites were significantly improved compared with the neat NBR. The well‐dispersed bentonite particles and effects of MPTMS were supported by the images from FE‐SEM. The results of TGA showed that the fastest weight‐loss temperature (Tmax) was elevated by over 10°C for the nanocomposites compared with the neat NBR, indicating an enhanced thermal stability. By swelling test, the swelling ratio was determined, decreased to 139% for the optimized NBR/MPTMS/Bt nanocomposites compared with 210% for neat NBR. POLYM. COMPOS., 36:1693–1702, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Nitrile rubber (NBR)–clay nanocomposites were prepared by co‐coagulating the NBR latex and clay aqueous suspension. Transmission electron microscopy showed that the silicate layers of clay were dispersed in the NBR matrix at the nano level and had a planar orientation. X‐ray diffraction indicated that there were some nonexfoliated silicate layers in the NBR–clay nanocomposites. Stress–strain curves showed that the silicate layers generated evident reinforcement, modulus, and tensile strength of the NBR–clay nanocomposites, which were significantly improved with an increase in the amount of clay, and strain‐at‐break was higher than that of the gum NBR vulcanizate when the amount of clay was more than 5 phr. The NBR–clay nanocomposites exhibited an excellent gas barrier property; the reduction in gas permeability in the NBR–clay nanocomposites can be described by Nielsen's model. Compared with gum NBR vulcanizate, the oxygen index of the NBR–clay nanocomposites increased slightly. The feasibility of controlling rubber flammability via the nanocomposite approach needs to be evaluated further. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3855–3858, 2003  相似文献   

4.
Organo‐montmorillonite/nitrile butadiene rubber (OMMT/NBR) nanocomposites were prepared by co‐coagulating process, and then were combined with rubber ingredient and vulcanized by traditional rubber mixing procedure. The SEM micrographs of the nanocomposites showed uniform dispersion of the OMMT particles in NBR. The ATR‐FTIR spectra illustrated the existence of montmorillonite in the nanocomposites. The XRD patterns further indicated the structure of nanocomposites, and confirmed an effective intercalation of NBR in the interlayer space of the OMMT. Moreover, the tensile strength and elongation at break of nanocomposites tended to increased rapidly with increasing OMMT loading, due to the reinforcing properties of OMMT to NBR. In addition, the TGA and DTA curves demonstrated the thermal performance of the nanocomposites enhanced. Furthermore, the addition of OMMT accelerated the vulcanization process. POLYM. COMPOS., 34:1809–1815, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
The nanocomposites of nitrile–butadiene rubber (NBR) and organo‐montmorillonite modified by hexadecyltrimethyl ammonium bromide (HMMT) were prepared by the reactive mixing intercalation method in the presence of the resorcinol and hexamethylenetetramine complex (RH). The structure of the NBR–RH–HMMT nanocomposites was characterized by XRD, TEM, FTIR, determination of crosslinking density, and so on. The results showed that the d‐spacing of HMMT increased substantially with RH addition and the layers of HMMT were dispersed in rubber matrix on a nanometer scale. The mechanical properties of the NBR–RH–HMMT nanocomposites were far superior to those of NBR–HMMT composites, and the glass transition temperature of NBR–RH–HMMT nanocomposite was higher than that of NBR. The reactive mixing intercalation method by introducing RH could enhance the interface combination between the rubber and the organoclay through the interactions of RH with NBR and modified clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1905–1913, 2006  相似文献   

6.
Nanocomposites of two different kinds of rubber (acrylonitrile-butadiene rubber NBR and styrene butadiene rubber SBR)/organo-montmorillonite nanocomposites modified by hexadecyltrimethyl ammonium bromide were prepared by the reactive mixing intercalation method in the presence of trimethylolpropane trimethylmethacrylate (TMPTMA). The influence of gamma irradiation on the morphology and properties of the rubber nanocomposites was investigated. Intercalated polar or unsaturated matrices (e.g., NBR and SBR)/OMMT nanocomposites can be obtained, which was confirmed by X-ray diffraction (XRD). The clay layers could be uniformly dispersed in the rubber matrix on the nanometer level. Mechanical tests showed that the nanocomposites had good mechanical properties as compared to the neat composites. The results also showed that the irradiated NBR/OMMT nanocomposites had higher thermal stabilities than irradiated SBR/OMMT nanocomposites.  相似文献   

7.
用机械共混法将4种牌号的有机蒙脱土(OMMT)与丁腈橡胶(NBR)/聚氯乙烯(PVC)共混,制备了纳米复合材料,并对其微观结构、硫化特性、力学性能以及耐油性进行了考察.结果表明,该复合材料具有插层型结构;4种牌号的OMMT均能提高共混胶的硫化速率,且能提高纳米复合材料的力学性能,其中牌号为FMR 11的OMMT增强效果最好,当其用量为6份时,纳米复合材料的拉伸强度比纯胶提高了49.96%,撕裂强度提高了36.9%,扯断伸长率也有所提高;随着OMMT用量的增加,纳米复合材料的耐油性逐渐提高.  相似文献   

8.
Zinc oxide (ZnO) nanoparticles were synthesized by homogeneous precipitation and calcination method and were then characterized by transmission electron microscopy and X‐ray diffraction analysis. Synthesized ZnO was found to have no impurity and had a dimension ranging from 30–70 nm with an average of 50 nm. The effect of these ZnO nanoparticles as cure activator was studied for the first time in natural rubber (NR) and nitrile rubber (NBR) and compared with conventional rubber grade ZnO with special reference to mechanical and dynamic mechanical properties. From the rheograph, the maximum torque value was found to increase for both NR and NBR compounds containing ZnO nanoparticles. ZnO nanoparticles were found to be more uniformly dispersed in the rubber matrix in comparison with the conventional rubber grade ZnO as evident from scanning electron microscopy/X‐ray dot mapping analysis. The tensile strength was observed to improve by 80% for NR when ZnO nanoparticles were used as cure activator instead of conventional rubber grade ZnO. An improvement of 70% was observed in the case of NBR. The glass transition temperature (Tg) showed a positive shift by 6°C for both NR and NBR nanocomposites, which indicated an increase in crosslinking density. The swelling ratio was found to decrease in the case of both NR and NBR, and volume fraction of rubber in swollen gel was observed to increase, which supported the improvement in mechanical and dynamic mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
《Polymer》2014,55(26):6940-6947
Thermoplastic elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR) and poly(ethylene-co-vinyl acetate) (EVA) with different weight ratios (20, 40 and 60 wt% of NBR) and 5 wt% of organocaly (OC) were prepared in an internal mixer. The results obtained from X-ray diffraction and transmission electron microscopy (TEM) micrographs showed that due to the OC–EVA interaction, nearly all of the clay platelets were exfoliated. Scanning electron microscope (SEM) was used to investigate the particle size and phase morphology. SEM images for the unfilled blends revealed a two-phase structure in which the NBR domains were dispersed into the EVA phase. However, for the blend containing 60 wt.% of NBR, a co-continuous morphology was exhibited. The addition of OC decreased the NBR domain size significantly in which NBR remained as a dispersed phase even for the blend having the highest amount of NBR studied. Young's modulus and yield stress increased, but elongation at break and stress at break decreased for the nanocomposites in comparison with that of the unfilled materials. Thermal studies indicated that although OC decreased the degree of crystallinity and crystallization temperature of EVA slightly, it showed no effect on EVA melting temperature in comparison with that of the unfilled samples. It was also found that the nanocomposites behaved as shear thinning fluids over the entire range of angular frequency and the values of storage modulus and stress relaxation modulus of the nanocomposite containing 20 wt% of NBR was even higher than that of the NBR alone.  相似文献   

10.
Nanocomposites were prepared with different grades of nitrile–butadiene rubber (NBR) [with nitrile (CN) contents of 26, 35, and 42%] with organoclay (OC) by a melt‐compounding process. The rubber/clay nanocomposites were examined by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). An increase in the polarity of NBR affected the XRD results significantly. The dispersion level of the nanofiller in the nanocomposites was determined by a function of the polarity of the rubber, the structure of the clay, and their mutual interaction. The intercalated structure and unintercalated structure coexisted in the lower polar of NBR. In addition, a relatively uniformly dispersed state corresponded to a more intercalated structure, which existed in the higher polar of NBR matrix. Furthermore, high‐pressure vulcanization changed the extent of intercalation. The mechanical properties and gas barrier properties were studied for all of the compositions. As a result, an improvement in the mechanical properties was observed along with the higher polarity of NBR. This improvement was attributed to a strong interaction of hydrogen bonding between the CN of NBR and the OH of the clay. Changes in the gas barrier properties, together with changes in the polarity of the rubbers, were explained with the help of the XRD and TEM results. The higher the CN content of the rubber was, the more easily the OC approached to the nanoscale, and the higher the gas barrier properties were. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Rubber nanocomposites containing one type of nanofiller are common and are widely established in the research field. In this study, nitrile rubber (NBR) based ternary nanocomposites containing modified silicate (Cloisite 30B) and also nano‐calcium carbonate (nano‐CaCO3) were prepared using a laboratory internal mixer (simple melt mixing). Effects of the hybrid filler system (filler phase have two kind of fillers) on the cure rheometry, morphology, swelling, and mechanical and dynamic–mechanical properties of the NBR were investigated. Concentration of nano‐CaCO3 [0, 5, 10, and 15 parts per one hundred parts of rubber by weight (phr)] and organoclay (0, 3, and 6 phr) in NBR was varied. The microstructure and homogeneity of the compounds were confirmed by studying the dispersion of nanoparticles in NBR via X‐ray diffraction and field emission scanning electron microscopy. Based on the results of morphology and mechanical properties, the dual‐filler phase nanocomposites (hybrid nanocomposite) have higher performance in comparison with single‐filler phase nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42744.  相似文献   

12.
累托石/丁腈橡胶纳米复合材料的结构与性能   总被引:8,自引:0,他引:8  
用乳液共混共凝法制备了累托石/丁腈橡胶(NBR)复合材料,分别进行了透射电镜分析和X射线衍射分析,研究了其力学性能和气体阻隔性能。结果表明,累托石以厚度为10.00nm左右的晶束均匀分散于NBR中;累托石/NBR复合材料属于隔离型纳米复合材料;与传统的炭黑/NBR复合材料和白炭黑/NBR复合材料相比,累托石/NBR纳米复合材料具有高的邵尔A型硬度和300%定伸应力.尤其是其气体阻隔性能得到了显著提高。  相似文献   

13.
Thermoplastic elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR) and polyamide 6 (PA6), with acid functionalized single‐wall carbon nanotubes (SWNT), were prepared via a direct melt‐mixing process in an internal mixer. The influence of SWNT content (0, 0.5, 1, 1.5) on morphological properties of PA6/NBR with different ratios (80/20, 70/30, 60/40) were then investigated. Characterization of nanocomposites was conducted by using transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, and mechanical properties. Scanning electron microscopy micrographs proved the droplet‐matrix blend morphology in which the size of NBR droplets decreased as the SWNT loading increased, suggesting dispersion of SWNT in the PA6 phase. It was further proved by transmission electron microscopy images, showing homogenous dispersion of SWNT in the PA6 phase. Differential scanning calorimetry results showed a slightly reduced percentage of crystallinity in samples containing SWNT. The mechanical properties of nanocomposites indicated an enhancement in tensile strength, modulus, and hardness on increasing SWNT content. J. VINYL ADDIT. TECHNOL., 22:336–341, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
Rubber/organic clay (OC) nanocomposites were produced by melt blending. Polar or unsaturated matrices (e.g., NBR and SBR) could easily enter into OC layers, whereas using nonpolar unsaturated rubber (EPDM), without other additives' help, intercalation structure could not be directly obtained. For the EPDM system, an intercalated structure was observed in presence of stearic acid (SA) for composites composed of SA and OC. Transmission electron microscopy observation showed that the dispersion of clay in nonpolar saturated rubber matrix was much poorer than that in polar or unsaturated matrix. The same effect of polar matrix was confirmed by comparison between IIR/OC and BIIR/OC systems. Moreover, using OC pretreated by SA (S‐OC), the dispersion of clay was obviously improved in the investigated nanocomposites, due to the intercalation of SA into OC interlayers. Especially in the nonpolar saturated EPDM system, the intercalation structure could be easily observed. Relative to the corresponding nanocomposites using OC, tensile strengths and the stresses at low strain of NBR and SBR based nanocomposites with S‐OC were significantly improved; while with EPDM nanocomposite, using S‐OC, only tensile strengths were improved but the stresses at low strain were almost the same, which should be related to the different interfacial force between OC and different rubber matrices. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A new negative temperature coefficient of resistor (NTCR) thermistors based on nitrile butadiene rubber/magnetite (NBR/Fe3O4) nanocomposites were successfully fabricated by conventional roll milling technique. X‐ray diffraction and transmission (TEM) analysis showed that the product is mainly magnetite nanoparticles with diameter of 10‐13 nm. The microstructure of (NBR/Fe3O4) nanocomposites were examined by scanning electron microscopy (SEM) and FTIR spectroscopy. The dispersion of magnetite nanoparticles in the NBR rubber matrix and interfacial bonding between them were rather good. The thermal stability of nanocomposites was also obviously improved with the inclusion of the magnetite nanoparticles. The thermal conductivity, thermal diffusivity and specific heat of nanocomposites were investigated. The electrical conductivity of the NBR/Fe3O4 increases with the rise in temperature exhibiting a typical negative temperature coefficient of resistance (NTCR) behavior like a semiconductor. The nature of the temperature variation of electrical conductivity and values of activation and hopping energy, suggest that the transport conduction process is controlled by hopping mechanism. Values of characteristics parameters of the thermistors like thermistor constant, thermistor sensitivity and thermistor stability is quite good for practical application as NTCR devices at high temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
采用乳液复合法制备水滑石(LDHs)/丁腈橡胶(NBR)纳米复合材料,并对其结构和性能进行研究。结果表明:复合材料中LDHs均匀分散在NBR基体中;与NBR胶料相比,LDHs/NBR复合材料的物理性能和气体阻隔性能明显提高;当LDHs/NBR用量比为1/20且LDHs用量为1份时,LDHs/NBR复合母胶/溴化丁基橡胶并用胶的气体阻隔性能较好。  相似文献   

17.
After‐hatching eggshell (AHES) nanobiofiller and nanocalcium carbonate (nano‐CA) were separately added to various elastomers, such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), and natural rubber (NR), in various amounts of 5, 10, and 15 phr. The effect of particle size and dispersion of such nanofillers on thermomechanical properties and curing characteristics were then investigated. The ultimate tensile properties of SBR and NR nanocomposites were improved to some extent when 5 phr of AHES nanofiller was added to the rubber compound compared to CA. In the case of NBR nanocompounds, however, the mechanical properties were seemingly comparable, irrespective of the type of nanofiller. This contradictive behavior could be attributed to the alteration of crosslink density due to particular filler–matrix interaction while using mineral and natural fillers. The results of the rheometric study revealed that using AHES rather than CA slightly increases the scorch time of all types of prepared nanocomposites, whereas a significant drop in the optimum curing time was seen for NBR nanocomposites containing AHES biofiller. Moreover, thermogravimetric analysis showed similar thermal stability for SBR nanocomposites containing AHES and CA fillers. Finer particle size of CA and higher porosity of AHES at high and low loading levels were respectively the main reasons for improvement of ultimate properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Abstract

It is proposed that a non-polar filler can reduce interfacial energies between polar and non-polar polymers. Experiments have been carried out to test this hypothesis using carbon black as the filler in blends of natural rubber (NR) and a nitrile rubber (NBR) with an acrylonitrile content of 45%. Blends of NR–NBR (70/30) were prepared in an internal mixer with varying amounts of carbon black. The dramatic decrease in domain size on addition of carbon black was nonetheless lower than that predicted. Further experiments showed that the amount of carbon black available at the interface for compatibilisation was influenced by preferential incorporation into the lower viscosity elastomer (NBR). Thus, elastomers of similar viscosity should be added to the mixer prior to the carbon black in order to maximise the amount of ‘free’ unwetted carbon black present when the elastomers are blended together. Blending experiments carried out under these conditions resulted in a morphology close to the prediction based on thermodynamic theory.  相似文献   

19.
Xiu-Ying Zhao  Ming Tian  Hao Fong  Riguang Jin 《Polymer》2007,48(20):6056-6063
A hindered phenol (AO-80) was studied to prepare rubber nanocomposites with nitrile butadiene rubber (NBR). The NBR/AO-80 rubber nanocomposites were successfully developed by applying the adopted preparation procedure/conditions, especially by introducing mechanical kneading of the NBR/AO-80 composites at a temperature higher than the melting point of AO-80, followed by the crosslinking of NBR molecules during the subsequent hot-pressing/vulcanization process. The nanocomposites consisted of two phases: (1) the AO-80 enriched phase (nanoparticles with the average size of approximately 20 nm) and (2) the NBR enriched phase (matrix). The generation and uniform distribution of the nanoparticles were attributed to the high temperature mechanical kneading process, the strong intermolecular interactions between AO-80 and NBR molecules, and the formation of a three-dimensional NBR network. The morphological, structural and mechanical properties of the composites were systematically investigated in each preparation step using SEM, TEM, DSC, XRD, FT-IR, DMTA and a tensile tester. The results indicated that the prepared NBR/AO-80 rubber nanocomposites had single relaxation transitions, improved tensile strengths, high dynamic mechanical loss values, and reasonably good stabilities. The NBR/AO-80 rubber nanocomposites are expected to have important applications as a high performance damping material.  相似文献   

20.
Nanocomposites of organophilic montmorillonite (C18‐MMT), nitrile–butadiene rubber (NBR), and a coupling agent were produced during a melt compounding process at room temperature. During the process, it was clearly observed that organo‐MMT particles were exfoliated into nanoscale layers of approximately 1–30 nm thickness, in addition to their original 40 μm thickness. These MMT layers were uniformly dispersed in the NBR matrix. The effects of a coupling agent such as 3‐(mercaptopropyl)trimethoxy silane in C18‐MMT/NBR nanocomposites were studied. The C18‐MMT/NBR nanocomposites in the presence of the coupling agent were identified and characterized by X‐ray diffraction, transmission electron microscopy, a universal testing machine, thermogravimetric analysis, and IR spectroscopy. It was observed that an additional silane coupling agent, 3‐(mercaptopropyl)trimethoxy silane, enhanced the chemical interaction and was accompanied by the formation of Si? O? Si coupling bonds between C18‐MMT and the coupling agent and Si? C coupling bonds between NBR and the coupling agent. This work resulted in improved properties of organo‐MMT/NBR nanocomposites because of the nanoscale effects and strong interaction of the coupling bonds between NBR and organo‐MMT. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2633–2640, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号