首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A series of poly(phthalazinone ether sulfone ketone) (PPESK) copolymers containing different component ratios of bis(4‐fluorodiphenyl) ketone and bis(4‐chlorodiphenyl)sulfone with respect to a certain amount of 4‐(4‐hydroxyphenyl)‐2,3‐phthalazin‐1‐one were synthesized by polycondensation. Glass transition temperatures of these polymers were adjusted from 263°C to 305°C by changing the ratios of reactants. Gas permeability and selectivity of the dense membranes of the polymers for three kinds of gases (CO2, O2, and N2) were determined at different temperatures. The result indicated that the membrane of PPESK (S/K = 1/1, mol ratio) had an excellent gas separation property. Permeability of the polymer membranes for CO2, O2, and N2 was P = 4.121 barrier, P = 0.674 barrier, and P = 0.0891 barrier, respectively. Separation factors of α and α were 7.6 and 46, respectively. New material was made into a composite membrane with silicone rubber for blocking up leaks and defects on the surface of its nonsymmetrical membrane. As a result of the test, permeability of the composite membrane was J = 7.2 × 10−6 cm3 (STP) cm−2 S−1 cm−1 Hg and J = 0.99 × 10−6 cm3 (STP) cm−2 S−1 cm−1 Hg, whereas the α was still higher than 7. These showed that PPESKs had a bright prospect as the potential membrane material for high‐temperature gas separation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2385–2390, 1999  相似文献   

2.
Mixtures of hexamethyldisiloxane [HMDSiO, (CH3)3SiOSi(CH3)3] and oxygen are plasma polymerized at different oxygen pressures (P = 1.3–11.4 Pa) and a fixed monomer pressure (Pm = 2.6 Pa). The discharge power is kept at 100 W throughout the work. Nanometer‐size holes in the deposited films are characterized by variable‐energy positron annihilation lifetime spectroscopy (PALS). Additional information on the film composition and structure is obtained by X‐ray photoelectron spectroscopy and IR absorption spectroscopy. The ortho‐positronium lifetime τ3 and intensity I3 increase with the P up to 6.2 Pa and then decrease with the P. PALS measurements after annealing at 400°C show that films prepared at high oxygen pressure have a less stable structure than a film deposited at a lower oxygen pressure. These results are discussed in comparison with plasma deposition of pure HMDSiO, as are the possible effects of oxygen radicals on the film structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 974–980, 2001  相似文献   

3.
Surface fluorination of poly(trimethylsilylpropyne) (PTMSP) membranes by CF4 plasma was studied. The surface fluorination of the membranes was carried out in an atmosphere of CF4 in a capacitively coupled discharge apparatus with external electrodes. Dramatic increase in selectivity (P/P) was observed. The effect of fluorination conditions such as duration of treatment and discharge power on the permeabilities of the membranes was studied. X-ray photoelectron spectrometric data of modified PTMSP membranes showed a drastic alternation in the surface layer. The P and P/P of the membranes were observed to be dependent on the F/C atomic ratio. At F/C > 1, the P/P value of the membranes could be more than four. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Azacrown ether chitosan (CTSC) was synthesized by the reaction of chitosan with N‐allyl benzo 15‐crown‐5 crown ether. Azacrown ether crosslinked chitosan (CCTSC) was prepared by the crosslinked reaction of CTSC and epichlorodydrin. Their structures were confirmed by infrared spectral analysis and X‐ray diffraction analysis. The adsorption properties of CTSC and CCTSC for metal ions were also investigated. The experimental results showed that the two chitosan derivatives not only had a good capacity to adsorb Pd2+ and Ag+ but also was highly selective for Pd2+ and Ag+ in the coexistence system containing other metal ions. At 20°C ± 1°C and pH = 4, the adsorption capacity of CTSC and CCTSC for Pd2+ was 186.1 and 173.1 mg/g, respectively; and for Ag+ was 90.2 and 56.5 mg/g, respectively. The selectivity coefficients were K = 6.99, K = ∞, K = 35.38, K = ∞ for CTSC and K = 10.66, K = ∞, K = 85.45, K = ∞ for CCTSC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2705–2709, 2006  相似文献   

5.
Mono‐Schiff bases containing a crown ether ring ( HL 1 , HL 2 , HL 3 and HL 4 ) and their transition metal complexes were synthesized and characterized by 1H NMR, IR, and mass spectroscopy as well as elemental analysis. The oxygenation constants (K) of Schiff base‐Co(II) complexes were measured over the range of −5 to +25 °C, and the values of ΔH° and ΔS° were calculated based on these K values. Using Mn(III)‐Schiff base complexes, the biomimetic catalytic oxidation of styrene to benzaldehyde was carried out with 100% selectivity. Comparison of this complex with analogues not containing a crown ether moiety clearly demonstrated the influence of crown ether ring on the dioxygen affinities and biomimetic catalytic oxidation performance of the Schiff base complexes.  相似文献   

6.
The novel positively charged poly(ether ether ketone)s (PEEKs) with pendant quaternary ammonium groups were synthesized by copolymerization of 3, 3′‐dimethylaminemethylene‐4,4′‐biphenol (DABP), 3,3′,4,4′‐tetramethylbiphenol, and 4,4′‐bisfluorobenzophenone followed by reaction with iodomethane. The resulting copolymers were used to prepare thin film composite (TFC) nanofiltration (NF) membranes via the dip‐coating method. The effects of different parameters such as copolymer concentration and curing time on the membrane performance (flux and rejection of inorganic salts) were investigated. The optimum parameters were that 1.5 wt % quaternary ammonium PEEK containing 1.8 quaternary ammonium groups per unit with 0.5 wt % DMSO coated on the polysulfone (PSf) support membrane and cured at 100°C. The results of the performance testing showed that the trend for rejection was R > R > RNaCl > R (R = rejection), which was a typical positively charged membrane. The best performance of these composite nanofiltration membranes was 91.3% rejection for 500 ppm MgCl2 and 62.5 L/m2 h water permeability at 0.4 MPa. The MWCO of the membrane was 800 Da. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Different amounts of (N,N′‐disalicylideneethylenediamin)cobalt (CoS) were blended to a cobalt (II)‐neutralized sulfonated EPDM (Co(II)S‐EPDM) ionomer membrane to enhance its oxygen‐enriching ability. Various influence factors on permeabilities and selectivities of the composite membranes, such as the gas pressure difference, the CoS content, and the testing temperature have been investigated. Oxygen permeability coefficients (P) and oxygen/nitrogen separation factors (α) increased simultaneously by decreasing the gas pressure difference or by increasing the CoS content. In comparison with the EPDM matrix, P and α of Co(II)S‐EPDM–CoS (85/15) composite membrane increased from 11.0 Barrer and 4.38 to 37.0 Barrer and 9.60. Obvious enhancement in the oxygen‐enriching property shows that the dual actions of cobaltous ion crosslinking and addition of an abundant cobalt complex may be an effective way to improve a rubbery polymer membrane. As high as 15 wt % of the CoS could be blended. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1071–1077, 1999  相似文献   

8.
Facilitated transport of oxygen was investigated in ethyl cellulose membranes containing cobalt(II) meso‐tetrakis (substituted phenyl) porphyrins [CoTPP, CoT(2‐Cl)PP, CoT(4‐Cl)PP, CoT(4‐MeO)PP, and CoT(2,4‐2MeO)PP] as fixed oxygen carriers. The oxygen permeability (P) and oxygen/nitrogen selectivity (P/P) of the membranes containing oxygen carriers increase with a decrease in the upstream gas pressure, but the nitrogen permeability (P) is almost independent of the upstream nitrogen pressure. This indicates that the fixed oxygen carriers in the polymer membranes can reversibly interact with oxygen and facilitate oxygen transport in the membranes. The study on the influences of the substituents in the cobalt(II) porphyrins and the fifth ligand (imidazole or pyridine) on the membrane permeation behaviors shows that the porphyrin complex with an electron‐accepting substituent in the meso‐phenyl ring or with imidazole as the fifth ligand could increase the permeability and oxygen/nitrogen selectivity of the membranes much more than that with an electron‐donating substituent or with pyridine as the fifth ligand. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 484–488, 2000  相似文献   

9.
This study investigates the sorption and transport properties of hydrocarbon membranes based on poly(vinyl alcohol) network and poly(styrene sulfonic acid‐co‐maleic acid) (PSSA‐MA). The water and methanol self‐diffusion coefficients through an 80 wt % PSSA‐MA interpenetrating SIPN‐80 membrane measured 3.75 × 10?6 and 5.47 × 10?7 cm2/s, respectively. These results are lower than the corresponding values of Nafion® 115 (8.89 × 10?6 cm2/s for water and 8.63 × 10?6 cm2/s for methanol). The methanol permeability of SIPN‐80 membrane is 4.1 × 10?7 cm2/s, or about one‐fourth that of Nafion® 115. The difference in self‐diffusion behaviors of Nafion® 115 and SIPN‐80 membranes is well correlated with their sorption characteristics. The solvent uptake of Nafion® 115 increased as the methanol concentration increased up to a methanol mole fraction of 0.63, and then decreased. However, the solvent uptake of the SIPN‐80 membranes decreased sluggishly as the methanol concentration increased. The λ values of water and methanol (i.e., λ and λ) in Nafion® 115 are quite close, indicating no sorption preference between water and methanol. In contrast, the λ value is only one‐third λ for a SIPN‐80 membrane. Accordingly, the SIPN membranes are regarded as candidates for direct methanol fuel cell applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A new class of amphiphilic dendritic ABA triblock copolymers, which is based on organic linear polyethylene oxide (PEO) and inorganic dendritic carbosiloxane (CSO) was synthesized. The strategy used in synthesizing these materials is based on divergent method using hydrosilylation‐alcoholysis cycles. The reaction conditions and structural features of dendrimers were analyzed by different physicochemical techniques such as: GPC, NMR, UV spectroscopy, DSC, and viscometry. The generational limit of dendrimer after the first generation, OSC‐D‐PEO‐D‐CSO, forced us to employ HSiCl2CH3 as branching reagent. Also further hydrosilylation of the third generation yielded an irregular structure species. Self‐assembling and morphological studies of first, OSC‐D‐PEO‐D‐CSO, and second, OSC‐D‐PEO‐D‐CSO, generations in aqueous medium were monitored by using fluorescence, TEM and DLS techniques. However, the dendritic block copolymer with third generation, OSC‐D‐PEO‐D‐CSO, could not be dispersed in aqueous phase. The diameters of denderitic micelles had a narrow distribution in the ranges of 69 and 88 nm, respectively. Although the micelles were stable even in first generation, partition equilibrium constants of pyrene and critical micelle concentration in both of dendritic micelles imply that the micellar behaviors of the supramolecules strongly depend on the hydrophobic block's size in which increasing generation effectively promoted the micelle formation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The air separation through triheptyl cellulose (THC)/ethyl cellulose (EC) blend membranes containing no more than 20 wt % THC at the temperature range from 298 to 358 K was investigated using a variable volume method. The air-separation ability for the THC/EC membranes were greater than that for the THC-free pure EC membrane. P for the THC/EC membranes was between 1.06–8.89 × 10?9 cm3 (STP) cm/cm2 s cmHg and P/P 3.04–3.66. The THC/EC membrane showed a unique trend in its P/P ? P relationship, i.e., the magnitude of P/P increased simultaneously with that of P. The THC/EC membrane yielded a maximum oxygen concentration in the oxygen-enriched air (OEA) of 39.5% at an OEA flux of 6.99 × 10?4 cm3 (STP)/s cm2 for a pressure difference of 0.43 MPa at 358 K. After 300 h of measurement at 0.40 MPa and 313 K, the efficiency of the concentrating oxygen was almost constant. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Mean permeability coefficients for CH4 and CO2 ( and ) in cellulose acetate (CA, DS = 2.45) were determined at 35°C (95°F) and at pressures up to about 54 atm (800 psia). The measurements were made with pure CH4 and CO2 as well as with CH4/CO2 mixtures containing 9.7, 24.0, and 46.1 mol % CO2. In the measurements with the pure gases, was found to decrease with increasing pressure, as expected from the “dual-mode” sorption model. By contrast, passes through a minimum and then increases with increasing pressure, probably due to the plasticization (swelling) of CA by CO2. The values of and determined with the mixtures containing 9.7 and 24.0 mol % CO2 decrease with increasing total pressure; this behavior is adequately described by the extended “dual-mode” sorption model for mixtures. By contrast, the values of and obtained with the mixture containing 46.1 mol % CO2 pass through a minimum and then increase as the total pressure is raised, probably also due to the plasticization of CA by CO2. The CO2/CH4 selectivity (≡/) of the CA membrances decreases with increasing total pressure and, at constant pressure, decreases with increasing CO2 concentration in the feed mixture. The effects of exposing the CA membranes to high-pressure CO2 prior to the permeability measurements (“conditioning” effects) on and have also been studied. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Oxidative coupling of methane over a La2O3/CaO catalyst was investigated in laboratory-scale fluidized-bed reactors (ID = 5 and 7 cm) in the following range of reaction conditions: T = 700 – 880°C, P = 41 – 72 kPa and P = 6 – 29 kPa. The maximum C2+ selectivity and yield amounted to 73.8% (T = 800°C, X = 13.1%, Y = 9.7%) and 16.0% (T = 840°C, X = 34.0%, S = 47.2%), respectively. Axial gas concentration profiles revealed that C2+ selectivity was not only influenced by oxidative consecutive reactions, but also by steam reforming of ethylene. When diluting the catalytic bed (mcat = 145 g) with quartz (m = 200 and 400 g), a slight decrease of the selectivity (1–2%) was observed. The dilution of the feed gas with nitrogen only led to only a small increase (< 2%) of the C2+ selectivity.  相似文献   

14.
This study demonstrates a new approach for converting SO2 into elemental sulfur by adding CH4 in a radio-frequency (RF) plasma reactor. With the applied power (P) of the RF reactor specified at 90 W and operating pressure set at 4000 N/m2, it was found that as the CH4/SO2 ratio (R) was increased from 0.3 to 1.0, most sulfur-containing products were in the form of elemental sulfur. While R was increased from 1 to 2, the content of elemental sulfur was decreased significantly, but CS2 was increased dramatically. While R was increased from 2 to 3, both elemental sulfur and CS2 contents became quite comparable. Nevertheless, it was found that both H2 and CO (that is, syngas) were the main nonsulfur-containing products under all testing conditions. These results indicate that the use of the RF plasma technique was not only beneficial to convert SO2, but also was able to convert CH4 into useful materials. For R = 0 (that is, no CH4 was introduced), it was found that the SO2 conversion (i.e., η) = 0.084, indicating that the RF plasma process was inadequate to convert pure SO2 without adding CH4 as a reducing agent. While R was increased to 2, it was found that η was improved significantly to 0.968 accompanied with η = 0.999. But as R was increased from 2 to 3, both η and η were slightly decreased. Both η and η also were sensitive to the applied power (P). As P was increased from 15 W to 90 W at R = 2, it was found that both η and η were increased dramatically from 0.247 and 0.320 to 0.968 and 0.999, respectively. But as P was increased from 90 W to 120 W, the increase on both η and η became very limited. Based on these, this study suggests that the operating condition of R = 2 and P = 90 W would be the most appropriate combination for SO2 conversion. © 2004 American Institute of Chemical Engineers AIChE J, 50: 524–529, 2004  相似文献   

15.
The hydrolysis of poly(ethylene terephthalate) (PET) was studied using ionic liquid 1‐n‐butyl‐3‐methylimidazolium chloride ([Bmim][Cl]) as solvent and acid‐functionalized ionic liquid 1‐methyl‐3‐(3‐sulfopropyl)‐imidazolium hydrogen sulfate ([HSOpmim][HSO4]) as catalyst. The effects of temperature, time, and dosages of solvent and catalyst on hydrolysis results were examined. Under the optimum conditions of m(PET) : m(H2O) : m([Bmim][Cl]) : m([HSOpmim][HSO4]) = 3 : 4 : 6 : 0.6, reaction temperature 170°C and time 4.5 h, the conversion of PET and the yield of terephthalic acid (TPA) were almost 100% and ≥88%, respectively. After easily separated from the product, the ionic liquids could be reused eight times without obvious decrease in the conversion of PET and yield of TPA. Hence, an environmental friendly strategy for chemical recycling of PET was developed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A new type of crosslinked chitosan was prepared using Dihydroxy azacrown ether as the crosslinking agent. Its structure was confirmed by elemental analysis, Fourier transform infrared (FTIR) spectra analysis, solid‐state 13C nuclear magnetic resonance (NMR) analysis, and X‐ray diffraction analysis. Its static adsorption properties for Ag+, Cd2+, Hg2+, and Co2+ were studied. The experimental results showed that the Dihydroxy azacrown ether crosslinked chitosan has good adsorption capacities and high selectivity for adsorption of Ag+ with the coexistence of Hg2+ and Co2+. The selectivity coefficients of crosslinked chitosan are k/ = 5.47, k/ = 4.64, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 530–535, 2002  相似文献   

17.
In this article, organic/inorganic membrane was prepared for gas separation by incorporating dodeca‐tungstophosphric acid (PWA) into the base polymer. Flat‐sheet composite membranes were produced via dry‐phase inversion method. In the first stage, the effects of PWA concentration on morphology and performance of polyvinyl alcohol (PVA) membranes were elucidated. For this stage, the preparation of membranes was carried out at constant temperature of 40°C. The porosity of the prepared membrane was slightly increased with addition of PWA. By increasing the PWA concentration up to 6 wt % in the membrane recipe, the permeability of N2, O and air was improved from 50,000 (for no addition of PWA) to around 160,000, 140,000, and 80,000 L m?2 h?1, respectively. For H this was enhanced from 110,000 to 230,000 L m?2 h?1. The ideal selectivity of the membrane was slightly improved for N2/air (from 1 to 1.2). For N2/O2 pair, the initial drop (from 2.5 to 1.5) was followed by a slight increase (1.5–1.9). Moreover, the selectivity was decreased for H2/air (from 2.8 to 1.8) and H2/N2 (from 2.2 to 1.7) by increasing the PWA concentration. The 10 wt % PVA membrane with 6 wt % PWA demonstrated superior performance compared with the other compositions. In summary, the presence of PWA in the casting solution results in lower flux for O2 and higher selectivity for H2/O2 pair. In the second stage, the effects of solvent evaporation temperature (10, 27, 40, and 80°C) on morphology and performance of the membranes were studied. By increasing the temperature, the number and size of voids were increased. The permeation of gases was improved from 100,000 L m?2 h?1 (at 10°C) to 150,000 (O2), 250,000 (air), 380,000 (N2), and 600,000 L m?2 h?1 (H2) by increasing the temperature up to 80°C. This increment resulted in selectivity alteration either increment or diminishment. The selectivity was changed from 1.3 to 3.2 (H2/O2), 0.8–2.5 (N2/O2), 1.2–2.4 (H2/air), 0.6–1.5 (N2/air) and 2.0–1.5 (H2/N2). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Two new chitosan azacrown ethers bearing hydroxyl groups (CTS‐DH and CTS‐DO) were synthesized by the reaction of 3‐hydroxyl‐1,5‐diaza‐cycloheptane and 3‐hydroxyl‐1,5‐diaza‐cyclooctane with epoxy‐activated chitosan. Their structures were characterized by elemental analysis, infrared spectra analysis, and X‐ray diffraction analysis. The adsorption and selectivity properties of the hydroxyl azacrown ethers chitosan derivatives for Ag+, Cr3+, Cd2+, and Pb2+ were also investigated. The experimental results showed that the two novel chitosan azacrown ethers have good adsorption capacity for Ag+, and also showed that the grafted chitosan azacrown ethers have high selectivity for the adsorption of Ag+ in the presence of Pb2+ and Cd2+. The selectivity coefficients of CTS‐DH and CTS‐DO were K = 21, K = 42, K = 20.5, K = 41, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1793–1798, 2001  相似文献   

19.
The ammoxidation of propylene on Fe-Bi-P mixed oxide catalyst was studied at 500 °C by the pulse reaction technique, to examine the effects of P(P = 0–4) and P (P/P = 0–3) on the catalyst activity. Since the ammoxidation of propylene proceeds through consumption of oxygen from the catalyst even in the absence of oxygen, the reduction of catalyst progresses with the number of O2-free pulse, losing its activity. In the presence of oxygen, however, the conversion of propylene and the selectivities of acrylonitrile, acetonitrile, CO2, and CO vary with the pulse number, but settle to some steady values corresponding to P/P. It is also found that the conversion and the selectivities depend on the oxidation state of the catalyst, the latter also depending on P/P in the reactants, and that the catalyst working in the flow system may be being reduced to some extent.  相似文献   

20.
Hybrid titanium catalysts supported on silica/poly(styrene‐co‐acrylic acid) (SiO2/PSA) core‐shell carrier were prepared and studied. The resulting catalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, laser scattering particle analyzer and scanning electronic microscope (SEM). The hybrid catalyst (TiCl3/MgCl2/THF/SiO2·TiCl4/MgCl2/PSA) showed core‐shell structure and the thickness of the PSA layer in the two different hybrid catalysts was 2.0 μm and 5.0 μm, respectively. The activities of the hybrid catalysts were comparable to the conventional titanium‐based Ziegler‐Natta catalyst (TiCl3/MgCl2/THF/SiO2). The hybrid catalysts showed lower initial polymerization rate and longer polymerization life time compared with TiCl3/MgCl2/THF/SiO2. The activities of the hybrid catalysts were enhanced firstly and then decreased with increasing P/P. Higher molecular weight and broader molecular weight distribution (MWD) of polyethylene produced by the core‐shell hybrid catalysts were obtained. Particularly, the hybrid catalyst with a PSA layer of 5.0 μm obtained the longest polymerization life time with the highest activity (2071 kg PE mol?1 Ti h?1) and the resulting polyethylene had the broadest MWD (polydispersity index = 11.5) under our experimental conditions. The morphology of the polyethylene particles produced by the hybrid catalysts was spherical, but with irregular subparticles due to the influence of PSA layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号