首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚乙二醇(PEG)为增塑剂、聚羟基丁酸戊酸酯(PHBV)为基体相,采用熔融共混法制备生物可降解PEG/PHBV复合材料。采用差示扫描量热仪(DSC)、热重分析仪(TG)、力学试验机探讨了PEG的添加量(5%~25%)对复合材料的结晶性能、热稳定性和力学性能的影响。结果表明,PEG的加入使得PHBV复合材料在较低的温度下形成更加完善的晶体,同时使得复合材料的结晶过程变得更加困难,结晶度下降。PHBV复合材料的热稳定性随着PEG添加量的增加先降低后升高,当PEG添加量为25%时,热稳定性能达到最佳。力学性能表明,PEG的加入使得PHBV复合材料的拉伸断裂伸长率和冲击强度显著提高,较纯PHBV增幅最大为57.0%和251.9%,复合材料的韧性得到明显改善,但拉伸强度和拉伸模量有所降低。  相似文献   

2.
以低分子量聚乙二醇(PEG)为增塑剂,马来酸酐改性的甘蔗纤维(MSF)为成核剂,采用熔融共混的方式制备PLA/MSF/PEG复合材料,并对复合材料的结晶行为、晶体形貌、力学和表面亲水性进行研究。结果表明:表面改性的MSF可作为异相成核剂,显著提高PLA的结晶能力;增塑剂PEG和成核剂MSF的协同加入,能够进一步提高PLA的结晶速率,并增大球晶尺寸。增塑剂PEG的加入,能够明显提高PLA/MSF/PEG的断裂伸长率,但使复合材料的拉伸强度和模量下降。与PLA/PEG共混物相比,PLA/MSF/PEG共混物具有更高的拉伸强度和模量。PLA/MSF(3%)/PEG(10%)的综合性能较好,与纯PLA相比断裂伸长率提高468.7%,拉伸强度降低48.7%左右。因此,增塑剂PEG与改性纤维MSF协同改性,使PLA/MSF/PEG共混物具有更优异的力学性能和结晶性能,能够进一步扩大PLA材料的应用范围。  相似文献   

3.
采用注塑工艺,探讨了乙酰柠檬酸三丁酯(ATBC)、聚乙二醇1500(PEG1500)、甘油(GY)和聚乙二醇200(PEG200)四种增塑剂及ATBC含量对聚乳酸/竹纤维(PLA/BF)复合材料的力学性能、吸水性、热稳定性、相容性的影响。结果表明,四种增塑剂都能使复合材料PLA/BF的相容性有所改善,但作用不同,少量ATBC的添加有利于PLA/BF复合体系相容性的提高。PEG1500和GY的添加有利于复合材料热稳定性的增加,而PEG200和ATBC则相反。PEG1500使复合材料的吸水率改变最大。力学性能分析可知,PEG1500对复合材料的韧性作用最显著,但同时拉伸强度的下降幅度也是最大,综合各因素得出ATBC最适合做该PLA/BF复合材料的增韧改性剂。随着ATBC含量的增加PLA/BF复合材料的热稳定性下降,吸水率提高,拉伸强度下降,韧性提高。  相似文献   

4.
研究了粉煤灰/PVC复合材料流变性与力学性能调控规律,考察了增塑剂和粉煤灰对体系流变性和剪切黏度影响,以及增塑剂量与复合材料力学性能的关系,确定了制备粉煤灰/PVC复合材料的最佳工艺。结果表明,粉煤灰/PVC共混体系流变性与粉煤灰和增塑剂的添加量密切相关,加入增塑剂可有效降低PVC剪切黏度,有利于制备高填充量的粉煤灰/PVC复合材料。在增塑剂添加量为30%(质量分数)、注塑温度为190℃条件下混炼12 min,制备得到粉煤灰填充量为75%的复合材料,其拉伸强度为7.2 MPa,弯曲强度为28.3 MPa。  相似文献   

5.
以聚氯乙烯(PVC)为基体树脂,研究不同增塑剂对软质聚氯乙烯复合材料邵氏硬度、拉伸强度和断裂伸长率的影响。结果表明:添加邻苯二甲酸二辛酯(DOP)制备软质PVC复合材料邵氏硬度大,但是添加乙酰柠檬酸三丁酯(ATBC)作为增塑剂制备软质PVC复合材料中的拉伸强度和断裂伸长率较大。  相似文献   

6.
采用超声辅助真空装置制备石墨烯纳米片(GNPs)/聚乙二醇(PEG)复配改性剂,通过熔融共混法制备了一系列聚乳酸(PLA)/GNPs、PLA/GNPs/PEG复合材料,利用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、差示扫描量热仪(DSC)、偏光显微镜(POM)和万能试验机对其断面形貌、结晶行为和力学性能进行研究。结果表明,添加复配改性剂GNPs/PEG后,PLA基复合材料的断面出现明显的PLA纤维,呈现韧性断裂; GNPs或GNPs/PEG的添加未改变PLA的晶型,当GNPs/PEG为0. 1%时,PLA基复合材料的结晶度达到38. 50%,比纯PLA提高了27. 99%; GNPs/PEG的添加也有效地改善了PLA的拉伸强度和缺口冲击强度,分别比纯PLA的提高了13. 32%和51. 9%。  相似文献   

7.
以聚乳酸(PLA)和淀粉纳米晶(SNC)为主要原料,聚乙二醇(PEG)为增塑剂,采用溶剂蒸发法制备PLA/SNC和PLA/SNC/PEG复合材料,通过差示扫描量热仪(DSC)、热台偏光显微镜(PLM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等研究了PEG对复合材料结晶行为、力学性能及界面相容性的影响。结果表明,PEG能够与SNC协同促进PLA结晶,使PLA/SNC/PEG复合材料的结晶速率明显提高;PEG的添加未改变PLA/SNC复合材料的结晶结构;随着PEG含量的增加,PLA/4%(质量分数,下同)SNC复合材料的拉伸强度先升高后下降,断裂伸长率不断提高;当PEG含量为2%时,PLA/4%SNC/2%PEG复合材料的力学性能最佳,拉伸强度为47.86 MPa,断裂伸长率为10.20%,PLA与SNC间界面相容性得到改善。  相似文献   

8.
通过溶液共混法,以三氯甲烷为溶剂,分别以聚乙二醇200(PEG200)和聚乙二醇1000(PEG1000)作为增塑剂制备了PEG增塑的聚乳酸复合薄膜。通过机械拉伸、热重、XRD和DSC对复合薄膜的力学性能、热稳定性以及热性能进行了表征。结果表明:PEG的加入能有效增强聚乳酸的柔性,断裂伸长率随PEG含量的增大明显升高,拉伸强度则随之降低,且少量添加时PEG200比PEG1000的增塑效率更高;增塑的聚乳酸薄膜低温热稳定性下降,冷结晶温度(t_c)和熔融温度(t_m)降低,结晶能力大幅提高,添加量为15%(质量分数)时PEG200和PEG1000增塑的聚乳酸薄膜结晶度(X_c)分别达到41.06%和50.15%。  相似文献   

9.
以聚乙二醇400(PEG400)为增塑剂,采用注塑成型的方法制备了聚乳酸/竹纤维(PLA/BF)复合材料,探讨了PEG400用量对PLA/BF复合材料增塑性能的影响。结果表明,PEG400的引入虽在一定程度上有利于PLA/BF复合材料两相相容性的提高,但会使复合材料的热稳定性下降、吸水性提高。力学性能测试表明,随着PEG400用量的增加,PLA/BF复合材料的拉伸强度逐渐下降,冲击强度则基本呈上升趋势,即PEG400对复合材料可起到一定的增韧作用。  相似文献   

10.
分别采用环氧树脂(EP)与三醋酸甘油酯(GT)对二醋酸纤维素(CA)进行增韧改性制备CA/EP与CA/GT复合材料。与CA/GT复合材料相比,CA/EP复合材料在达到相同的拉伸强度时,所获得的断裂伸长率更高。同时随着EP添加量的增多,CA/EP复合材料的冲击强度也随之增加,韧性得到显著改善。通过维卡软化点测试,可以发现CA/EP复合材料的耐热性能更加优异。增塑剂迁移率测试表明,CA/EP复合材料迁移率较CA/GT明显降低。透明度测试与SEM表明,EP与CA之间相容性较好,并且EP的加入,可以诱导CA从脆性断裂向韧性断裂发生转变。  相似文献   

11.
采用微波技术替代传统热源,以D,L-丙交酯为原料,加入纳米有机蒙脱土(OMMT)及增塑剂聚乙二醇(PEG)进行原位插层聚合制备聚乳酸(PLA)/OMMT/PEG纳米复合材料。在微波功率90 W下作用10 min,w(OMMT)和w(PEG)分别为1%,0.8%时,复合材料拉伸强度达15.39 MPa,拉伸断裂应变为11.67%,热失重中心温度提高6.6℃。形貌分析结果表明,OMMT以剥离形态均匀分散于PLA中,复合材料趋向于韧性断裂。土壤填埋实验结果表明,该复合材料具备更好的降解性能。  相似文献   

12.
采用偶联剂KH570对玄武岩纤维(BF)进行表面改性,研究表面改性BF的长度、添加量对增强环氧树脂(EP)复合材料力学性能的影响。结果表明,改性BF表面产生很多凸起,变得非常粗糙。BF表面改性使复合材料的拉伸强度提高10%~20%,冲击强度提高10%~40%。随着改性BF长度及添加量的增加,复合材料的力学性能显著提高。当改性长BF的质量分数为4%时,与纯EP相比,复合材料的拉伸强度和冲击强度分别提高248.3%和451.5%。长BF的增强效果明显好于改性长玻璃纤维(GF),尤其纤维的添加量较大时复合材料拉伸强度的提高更为明显。当长BF的质量分数为4%时,长BF增强复合材料的拉伸强度较长GF增强复合材料提高37.8%,冲击强度提高9.2%。  相似文献   

13.
用钛酸酯对电气石进行表面改性,将改性后的电气石与线性低密度聚乙烯(LLDPE)共混,采用挤出造粒、注塑成型工艺,制备电气石/LLDPE复合材料。对复合材料进行了性能测试。测试结果表明,当电气石添加量为2%时,复合材料的拉伸强度和缺口冲击强度都达到最大值,此时拉伸强度比未添加电气石的LLDPE的拉伸强度提高了2. 8%,缺口冲击强度提高了46. 0%,且复合材料可释放负离子,具有空气净化功能。  相似文献   

14.
采用异佛尔酮二异氰酸酯(IPDI)和环氧丙醇反应得到的含—NCO基团的半加成物(IG)与蓖麻油基超支化聚酯多元醇(C10)反应得到蓖麻油基超支化环氧树脂(C10-IG)。通过红外光谱、核磁共振光谱及力学性能测试研究了C10-IG的结构及其添加量对E-51环氧复合材料性能的影响。结果表明,复合材料的力学强度随着C10-IG用量的增加,先增大后减小。当C10-IG的添加质量分数为6%时,材料的综合性能最佳,拉伸强度、弯曲强度、剪切强度和冲击强度较纯树脂体系分别提高了11.1%,8.5%,20.1%和133.9%。通过冲击断裂面形貌分析认为C10-IG对E-51树脂体系的增韧机理为原位增韧。  相似文献   

15.
以茶废弃物(TW)为填料、聚乳酸(PLA)为基体,二苯基甲烷二异氰酸酯(MDI)为偶联剂,经密炼-注塑工艺制备了TW/PLA复合材料,考察了MDI对该复合材料结构与性能的影响。结果表明,MDI的添加改善了TW与PLA的界面相容性,提高了TW/PLA复合材料的力学性能、储能模量、玻璃化转变温度及热稳定性,降低了复合材料吸水率。在MDI添加量为TW用量的2%时,复合材料的力学性能最佳,与未增容TW/PLA复合材料相比,其拉伸强度、弯曲强度及缺口冲击强度分别提高18.9%、17.6%和7.2%,拉伸模量和弯曲模量分别提高12.6%和30.6%。  相似文献   

16.
庞锦英  莫羡忠  刘钰馨 《化工进展》2015,34(4):1050-1054
采用乙酰柠檬酸三丁酯(ATBC)作为增塑剂增塑聚乳酸,添加改性香蕉纤维和膨胀型阻燃剂(IFR)制备阻燃香蕉纤维增强聚乳酸复合材料.研究结果表明,偶联剂处理纤维的效果最好,使复合材料的拉伸、弯曲强度分别达到57.49MPa、101.80MPa,与扫描电子显微镜(SEM)的结果一致;IFR含量为5份(以聚乳酸为100份计)时综合性能最佳,材料的极限氧指数达到了 32.8%,垂直燃烧实验达到了 V-0 级(UL-94),材料的拉伸和弯曲强度分别为43.97 MPa 和87.95MPa,效果最好.热失重研究结果表明,阻燃香蕉纤维的加入能明显提高聚乳酸的热分解温度和残炭量.  相似文献   

17.
将膨胀石墨(EG)/硬脂酸(SA)通过高温膨胀制得部分氧化的石墨烯(p-GO),并将p-GO与聚乙二醇(PEG)在超声振荡耦合真空灌注作用下制备出p-GO/PEG复配成核剂,利用双螺杆挤出机熔融共混制备一系列聚乳酸(PLA)/p-GO/PEG复合材料,并对其进行傅立叶变换红外光谱、广角X射线衍射、扫描电子显微镜、差示扫描量热、热失重分析、力学性能等测试。结果表明,高温膨胀法能够在很大程度上将EG充分剥离并部分氧化;p-GO对复合材料的结晶行为有着明显的促进作用,但含量过多易引起团聚现象;与纯PLA相比,当p-GO质量分数为0.6%时,PLA/p-GO复合材料的拉伸强度提高了4.9%,悬臂梁缺口冲击强度提高了48.4%,初始热分解温度提高了7.88℃;而相应的PLA/p-GO/PEG复合材料的拉伸强度提高了7.5%,悬臂梁缺口冲击强度提高了51.6%,初始热分解温度提高了9.4℃。  相似文献   

18.
以环氧树脂(EP)、双马来酰亚胺(BMI)、4,4’-二氨基二苯砜(DDS)和短切碳纤维(SCF)等为主要原料制备了EP/BMI/DDS/SCF复合材料,并研究了SCF添加量对复合材料力学性能和热性能的影响。结果表明,当SCF添加量为0.25 %(质量分数,下同)时,EP/BMI/DDS/SCF复合材料的力学性能提高最大,其拉伸强度、弯曲强度、弯曲模量和缺口冲击强度比未添加SCF时的EP/BMI/DDS复合材料分别提高了48.52 %、32.15 %、25.77 %以及150.91 %;此外,SCF的加入有助于提高复合材料的热性能。  相似文献   

19.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

20.
以石墨烯(GE)和氧化铝(Al_2O_3)为导热填料,三元共聚尼龙(CO-PA)为基体,硅烷偶联剂KH-550为表面改性剂,通过溶液共混的方法制备了石墨烯/氧化铝/三元共聚尼龙导热复合材料。XRD和SEM分析表明,GE、Al_2O_3的加入改变了尼龙的结晶晶型; DSC与TGA分析表明,GE与Al_2O_3的填料体系降低了尼龙的结晶性能,同时复合材料的热稳定性得到提高;热导率测试结果表明,填料的添加使复合材料的热导率得到较为明显的提高,当Al_2O_3的添加量为50%,GE添加量8%时,复合材料的热导率提高了8. 8倍;力学测试表明,低含量的导热填料能够提高复合材料的力学性能,当Al_2O_3添加量为50%,GE含量为1%时,复合材料的屈服强度提高了62. 1%,当Al_2O_3添加量为30%时,复合材料的拉伸强度提高了21. 2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号