首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinic acetylcholine receptors are widely expressed in the nervous system, but their functions remain poorly understood. One attractive hypothesis is that the receptors act presynaptically to modulate synaptic transmission. We provide a direct demonstration of presynaptic nicotinic receptors in situ by using whole-cell patch-clamp techniques to record currents in large presynaptic calyces that midbrain neurons form on ciliary neurons. Bath application of nicotine induced inward currents in the calyces capable of generating action potentials that overrode the limited space clamp achievable. The inward currents reversed near 0 mV and showed inward rectification common for neuronal nicotinic receptors. Tetrodotoxin (TTX) blocked the action potentials but not the inward currents. alpha-Bungarotoxin blocked both, consistent with the presynaptic receptors containing alpha7 subunits. Recording from the postsynaptic ciliary neurons during nicotine exposure revealed EPSCs that TTX blocked, presumably by blocking presynaptic action potentials. The postsynaptic cells also displayed bimodal inward currents caused by their own nicotinic receptors; the bimodal currents were not blocked by TTX but were blocked partially by alpha-bungarotoxin and completely by D-tubocurarine. Dye-filling with Lucifer yellow from the recording pipette confirmed the identity of patched structures and showed no dye transfer between calyx and ciliary neuron. When calyces or ciliary neurons were labeled en mass with neurobiotin and biocytin through nerve roots, dye transfer was rarely observed. Thus, electrical synapses were infrequent and unlikely to influence calyx responses. Immunochemical analysis of preganglionic nerve extracts identified receptors that bind alpha-bungarotoxin and contain alpha7 subunits. The results unambiguously document the existence of functional presynaptic nicotinic receptors.  相似文献   

2.
1. Phorbol 12-myristate 13-acetate (TPA, 1 microM) and phorbol 12,13-dibutyrate (PDBu, 2 microM), activators of protein kinase C (PKC), increased the mean amplitude and decay time of the spontaneous synaptic currents of Xenopus nerve-muscle coculture, whereas, 4 alpha-phorbol (2 microM) which is an inactive phorbol analogue had no effect. 2. Staurosporine (0.5 microM) and H-7 (10 microM), inhibitors of PKC, inhibited the potentiation effects of TPA on the spontaneous synaptic currents. 3. Effects of TPA on the postsynaptic acetylcholine (ACh) sensitivity were examined by iontophoresis of ACh to the surface of embryonic muscle cells of 1-day-old Xenopus cultures. TPA increased both the amplitude and decay time of ACh-induced whole-cell currents in isolated myocytes. 4. TPA concentration-dependently increased the mean open time of low-conductance ACh channels but did not affect those of high-conductance ACh channels. PDBu but not 4 alpha-phorbol exhibited similar effects to TPA. Staurosporine and H-7 inhibited the increasing effects of TPA. 5. These results suggest that activation of PKC might be involved in synaptogenesis at developing neuromuscular synapses by the postsynaptic potentiation of ACh sensitivity.  相似文献   

3.
Synaptic modulation and long-term synaptic changes are thought to be the cellular correlates for learning and memory (Madison et al., 1991; Aiba et al., 1994, Goda and Stevens, 1996). The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and has a high density of nicotinic acetylcholine receptors (nAChRs) (Wada et al., 1989; Woolf, 1991). We report that stro ng, brief stimulation of nAChRs enhanced hippocampal glutamatergic synaptic transmission on two independent time scales and altered the relationship between consecutively evoked synaptic currents. The nicotinic synaptic enhancement required extracellular calcium and was produced by the activation of presynaptic alpha7-containing nAChRs. Although one form of glutamatergic enhancement lasted only for seconds, another form lasted for minutes after the nicotinic stimulation had ceased and the nicotinic agonist had been washed away. The synaptic enhancement lasting minutes suggests that nAChR activity can initiate calcium-dependent mechanisms that are known to induce glutamatergic synaptic plasticity. The results with evoked synaptic currents showed that nAChR activity can alter the relationship between the incoming presynaptic activity and outgoing postsynaptic signaling along glutamatergic fibers. Thus, the same information arriving along the same glutamatergic afferents will be processed differently when properly timed nicotinic activity converges onto the glutamatergic presynaptic terminals. Influencing information processing at glutamatergic synapses may be one way in which nicotinic cholinergic activity influences cognitive processes. Disruption of these nicotinic cholinergic mechanisms may contribute to the deficits associated with the degeneration of cholinergic functions during Alzheimer's disease.  相似文献   

4.
1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.  相似文献   

5.
Optical recordings of membrane depolarization and whole-cell patch-clamp recordings of membrane potentials and currents were obtained from chromaffin cells in slices of rat adrenal medulla. The stimulation of splanchnic nerve fibers caused a discontinuous spread of electrical activity across the slice. Cells in clusters with diameters of about 80 microns were excited simultaneously, suggesting that the adrenal medulla is organized into descrete cell complexes with common innervation. The electrical properties of chromaffin cells in situ were in agreement with previous reports on cultured cells. A fraction of the recorded cells displayed excitatory postsynaptic currents (EPSCs) of 0.2-1 nA upon the stimulation of presynaptic nerve fibers. The EPSC was blocked by hexamethonium, suggesting that nicotinic ACh receptors were involved. The decay phase of the EPSC was well fit by the sum of two exponentials with time constants of 6.3 and 57.3 ms. The relative amplitude of the fast component was 84.1%. These two exponentials may reflect activation of both fast and slow time-constant ACh receptor channels by presynaptic release of ACh. There were multiple peaks in the EPSC amplitude histograms in low-[Ca2+] saline, the first peak was at 37 pA. To resolve the quantal size, miniature EPSCs were recorded in a tetrodotoxin-containing high-[K+] solution. The miniature EPSC amplitude histograms were also multimodal with the first peak at 25 pA, which probably represents the quantal size of the synapse. The second and third peaks were at the integer multiples of the first one.  相似文献   

6.
GABA is the primary transmitter released by neurons of the suprachiasmatic nucleus (SCN), the circadian clock in the brain. Whereas GABAB receptor agonists exert a significant effect on circadian rhythms, the underlying mechanism by which GABAB receptors act in the SCN has remained a mystery. We found no GABAB receptor-mediated effect on slow potassium conductance, membrane potential, or input resistance in SCN neurons in vitro using whole-cell patch-clamp recording. In contrast, the GABAB receptor agonist baclofen (1-100 microM) exerted a large and dose-dependent inhibition (up to 100%) of evoked IPSCs. Baclofen reduced the frequency of spontaneous IPSCs but showed little effect on the frequency or amplitude of miniature IPSCs in the presence of tetrodotoxin. The activation of GABAB receptors did not modulate postsynaptic GABAA receptor responses. The depression of GABA release by GABAB autoreceptors appeared to be mediated primarily through a modulation of presynaptic calcium channels. The baclofen inhibition of both calcium currents and evoked IPSCs was greatly reduced (up to 100%) by the P/Q-type calcium channel blocker agatoxin IVB, suggesting that P/Q-type calcium channels are the major targets involved in the modulation of GABA release. To a lesser degree, N-type calcium channels were also involved. The inhibition of GABA release by baclofen was abolished by a pretreatment with pertussis toxin (PTX), whereas the inhibition of whole-cell calcium currents by baclofen was only partially depressed by PTX, suggesting that G-protein mechanisms involved in GABAB receptor modulation at the soma and axon terminal may not be identical. We conclude that GABAB receptor activation exerts a strong presynaptic inhibition of GABA release in SCN neurons, primarily by modulating P/Q-type calcium channels at axon terminals.  相似文献   

7.
We studied the postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors in the rat hippocampus. To this end, hippocampal slices (350 microns thick) from rats of various postnatal ages (postnatal day 3 [P3] to P16) were preincubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 2 ms, 3 Hz, 60 mA) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the cholinergic ingrowth. In hippocampal slices preincubated with [3H]choline, the electrically evoked overflow of 3H at S1 increased from 0.11 (P3) to 0.81% of tissue 3H (P16), the latter value being still much lower than that of hippocampal slices from adult rats (2.89% of tissue 3H). Already at P3 the evoked overflow of 3H was Ca(2+)-dependent and sensitive to tetrodotoxin, indicating an action potential-evoked exocytotic mechanism of ACh release. The muscarinic agonist oxotremorine (1 microM) significantly inhibited the evoked ACh release in hippocampal slices with increasing effectivity from P4 to P16; no significant effect was detectable at P3. The ACh esterase inhibitor physostigmine and the muscarinic antagonist atropine (1 microM, each) exhibited significant inhibitory and facilitatory effects, respectively, only at P15-16. The specific activities of both hippocampal HACU (pmoles/mg protein/min) and ChAT (nmoles/mg protein/min) continuously increased from P3 to P16. It is concluded (1) that cholinergic nerve terminals arriving at the hippocampal formation during postnatal ingrowth are already endowed with the apparatus for action potential-induced, Ca(2+)-sensitive (exocytotic) ACh release; (2) that, in contrast, the expression of presynaptic muscarinic autoreceptors on these cholinergic axon terminals is delayed; and (3) that autoinhibition due to endogenous ACh develops even later, probably when the density of presynaptic terminals in the hippocampus and hence, the concentration of released ACh has reached a suprathreshold value.  相似文献   

8.
Exploration of the mechanisms and plasticity of synaptic transmission has been hindered by the lack of a method to measure single vesicle turnover directly in individual presynaptic boutons at isolated nerve terminals. Although postsynaptic electrical recordings have provided a wealth of invaluable basic information about quantal presynaptic processes, this approach has often proved difficult to apply at most central nervous system synapses. Here we describe the direct optical detection of single quantal events in individual presynaptic boutons of cultured hippocampal neurons. Using the fluorescent dye FM 1-43 as a tracer for presynaptic endocytosis, we have characterized both evoked and spontaneous components of presynaptic function at the level of individual quanta. Our results are consistent with quantal interpretations of previous electrophysiological analyses and provide new information about the unitary membrane recycling event and its coupling to individual action potential stimuli, about spontaneous vesicle turnover at individual boutons, and about the numbers of vesicles recycling at individual boutons.  相似文献   

9.
To elucidate the mechanism underlying epileptiform discharges in kindled rats, synaptic responses in kindled basolateral amygdala neurons in vitro were compared with those from control rats by using intracellular and whole cell patch-clamp recordings. In kindled neurons, electrical stimulation of the stria terminalis induced epileptiform discharges. The resting potential, apparent input resistance, current-voltage relationship of the membrane, and the threshold, amplitude, and duration of action potentials in kindled neurons were not different from those in control neurons. The electrical stimulation of stria terminalis elicited excitatory postsynaptic potentials (EPSPs) and DL-2-amino-5-phosphonopentanoic acid (AP5)-sensitive and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive excitatory postsynaptic currents (EPSCs). The amplitude of evoked EPSPs and of evoked AP5-sensitive and CNQX-sensitive EPSCs were enhanced markedly, whereas fast and slow inhibitory postsynaptic potentials (IPSPs) induced by electrical stimulation of lateral amygdaloid nucleus were not significantly different. The rise time and the decay time constant of the evoked CNQX-sensitive EPSCs were shortened, whereas the rise time of the evoked AP5-sensitive EPSCs was shortened, but the decay time constants were not significantly different. In both tetrodotoxin (TTX)-containing medium and low Ca2+ and TTX-containing medium, the frequency and amplitude of spontaneous EPSCs were increased in kindled neurons. These increases are presumably due to nearly synchronous multiquantal events resulted from the increased probability of Glu release at the nerve terminals. The rise time of evoked CNQX- and AP5-sensitive EPSCs and the decay time constant of evoked CNQX-sensitive EPSCs were shortened, suggesting that excitatory synapses at the proximal dendrite and/or the soma in kindled neurons may contribute more effectively to generate evoked EPSCs than those at distal dendrites. In conclusion, the increases in the amplitudes of spontaneous and evoked EPSCs and in the frequency of spontaneous EPSCs may contribute to the epileptiform discharges in kindled neurons.  相似文献   

10.
The actions of the endogenous ORL1-receptor ligand nociceptin on the membrane properties and synaptic currents in rat periaqueductal gray (PAG) neurons were examined by the use of whole-cell patch-clamp recording in brain slices. Nociceptin produced an outward current in all neurons tested, with an EC50 of 39 +/- 7 nM. The outward current was unaffected by naloxone. Outward currents reversed polarity at -110 +/- 3 mV in 2.5 mM extracellular potassium, and the reversal potential increased when the extracellular potassium concentration was raised (slope = 66.3 mV/log[K+]o mM). Thus, the nociceptin-induced outward current was attributable to an increased K+ conductance. Nociceptin inhibited evoked fast GABAergic (IP-SCs) and glutamatergic (EPSCs) postsynaptic currents and increased paired-pulse facilitation in a subpopulation of PAG neurons. Nociceptin inhibited evoked IPSCs and EPSCs in approximately 50% of neurons throughout the PAG, except in the ventrolateral PAG, where nociceptin inhibited evoked IPSCs in most neurons. Nociceptin decreased the frequency of spontaneous miniature postsynaptic currents (mIPSCs and mEPSCs) in a subpopulation of PAG neurons but had no effect on their amplitude distributions. Thus, nociceptin had a presynaptic inhibitory effect on transmitter release. These findings suggest that nociceptin, via its pre- and postsynaptic actions, has the potential to modulate the analgesic, behavioral, and autonomic functions of the PAG.  相似文献   

11.
Acetylcholine (ACh) release from the motor nerve terminal in the streptozocin-induced diabetic state was studied in mouse phrenic nerve-diaphragm muscle preparations. Electrically evoked release of 3H-ACh from the preparation preloaded with 3H-choline was measured during two consecutive periods of stimulation (S1 and S2). In diabetic mice, the amount of 3H-ACh release during S2 was decreased, and the evoked ACh release declined more steeply with successive stimulation periods than in normal ddY mice. The decrease in release was restored when the presynaptic autoreceptors were stimulated by accumulating ACh under the irreversible inhibition of junctional cholinesterase by methanesulfonyl fluoride. This effect was abolished by the administration of (+)-tubocurarine (5 microM). In diabetic mice, the biphasic (acceleration and suppression) effect by succinylcholine on evoked ACh release was caused at 3- to 10-fold lower concentrations than in normal mice. The degree of enhancement of resting 3H-overflow by succinylcholine (10 and 30 microM) was greater in the diabetic state. These results indicated that in the diabetic state, the decrease in evoked ACh release interferes with its presynaptic action on inducing further release (positive feedback modulation) via the presynaptic nicotinic ACh receptor (n-AChR). The presynaptic hypersensitivity to succinylcholine may be due to the augmentation of presynaptic n-AChR sensitivity caused by the reduction of evoked ACh release in the diabetic state.  相似文献   

12.
We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the presynaptic cell at synapses between embryonic hippocampal neurons in culture, the dominant negative TrkB.T1 inhibited two forms of synaptic potentiation induced by the neurotrophin brain-derived neurotrophic factor (BDNF): (i) greater evoked synaptic transmission and (ii) higher frequency of spontaneous miniature synaptic currents. These inhibition effects are not seen if the transgene is expressed only in the postsynaptic cell. We conclude that BDNF-TrkB signal transduction in the presynaptic terminal leads to both types of potentiation and is therefore the primary cause of synaptic enhancement by BDNF in these neurons.  相似文献   

13.
Involvement of an L-type Ca2+ channel in the regulation of spontaneous transmitter release was studied in Xenopus nerve-muscle cultures. The frequency of spontaneous synaptic currents, which reflects impulse-independent acetylcholine release from the nerve terminals, showed a marked increase in high-K+ medium or after treatment with a phorbol ester, 12-O-tetradecanoyl-phorbol 13-acetate, a drug that activates protein kinase C and depolarizes the presynaptic neuron. The potentiation effect of high K+ and 12-O-tetradecanoyl-phorbol 13-acetate requires Ca2+ influx through the L-type Ca2+ channel in the plasma membrane, since it was significantly reduced by the presence of nifedipine, verapamil or diltiazem and enhanced by Bay K 8644, an L-type Ca2+ channel agonist. It was shown recently that adenosine 5'-triphosphate markedly potentiates the spontaneous acetylcholine release at these synapses through the binding of P2-purinoceptors and the activation of protein kinase C. We found in the present study that potentiation effects of adenosine 5'-triphosphate are inhibited by L-type Ca2+ channel blockers, suggesting that the L-type Ca2+ channel is responsible for the positive regulation of spontaneous acetylcholine secretion by adenosine 5'-triphosphate at the developing neuromuscular synapses. Our data suggest that modulation of the L-type Ca2+ channel in embryonic motor nerve terminals is important for the regulation of spontaneous transmitter release.  相似文献   

14.
The cholinergic efferent inhibition of mammalian outer hair cells (OHCs) is mediated by a hyperpolarizing K+ current. We have made whole-cell tight-seal recordings from single OHCs isolated from the guinea pig cochlea to characterize the mechanism by which acetylcholine (ACh) activates K+ channels. After ACh application, OHCs exhibited a biphasic response: an early depolarizing current preceding the predominant hyperpolarizing K+ current. The current-voltage (I-V) relationship of the ACh-induced response displayed an N-shape, suggesting the involvement of Ca2+ influx. When whole-cell recording was combined with confocal calcium imaging, we simultaneously observed the ACh-induced K+ current (IK(ACh)) and a Ca2+ response restricted to the synaptic area of the cell. This IK(ACh) could be prevented by loading OHCs with 10 mM of the fast Ca2+ buffer bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (or BAPTA), therefore allowing the observation of the ACh-induced early current in isolation. This early current revealed nicotinic features because it activated with an intrinsic delay in the millisecond range, reversed nearly in between potassium and sodium equilibrium potentials, and was blocked by curare. However, it was strongly reduced in the absence of external Ca2+, and its I-V relationship displayed an unusual outward rectification at positive membrane potentials and an inward rectification below -60 mV. The results indicate that the cholinergic response of mammalian OHCs involves a "nicotinic-like" nonspecific cation channel through which Ca2+ enters and triggers activation of nearby Ca2+-dependent K+ channels.  相似文献   

15.
Posttetanic potentiation (PTP) is a common form of short-term synaptic plasticity that is generally thought to be entirely presynaptic. Consistent with that idea, PTP of evoked excitatory postsynaptic potentials at Aplysia sensory-motor neuron synapses in cell culture was reduced by presynaptic injection of a slow calcium chelator and was accompanied by an increase in the frequency but not the amplitude of spontaneous excitatory postsynaptic potentials. However, PTP was also reduced by postsynaptic injection of a rapid calcium chelator or postsynaptic hyperpolarization. Thus, PTP at these synapses is likely to involve a postsynaptic induction mechanism in addition to the known presynaptic mechanisms.  相似文献   

16.
We studied the postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors in the cell body region of the septohippocampal cholinergic pathway. To this end, septal slices (350 microns thick) from rats of various postnatal ages (postnatal day 3 [P3] to P16) were preincubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 2 ms, 3 Hz, 60 mA) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the development of cholinergic functions. In septal slices preincubated with [3H]choline, the electrically evoked overflow of 3H at S1 increased from 0.31% (P3) to 2.10% of tissue 3H (P16), the latter value being still lower than that of septal slices from adult rats (3.46% of tissue 3H). Already at P3, the evoked overflow of 3H was Ca(2+)-dependent and sensitive to tetrodotoxin, indicating an action potential-evoked exocytotic mechanism of ACh release early after birth. Presence of the muscarinic agonist oxotremorine (1 microM) significantly inhibited the evoked ACh release in septal slices beginning from P5: no significant effect was detectable at P3. The ACh esterase inhibitor physostigmine (1 microM) exhibited significant inhibitory effects from P13 onwards. The muscarinic antagonist atropine (1 microM) enhanced the evoked ACh release only in septal tissue from adult rats. The specific activities of HACU, or ChAT showed a 2- or 8-fold increase, respectively, from P3 to P16. In conclusion, presynaptic cholinergic functions seem to develop almost in parallel both in the cell body and the target area of the septohippocampal projection: also in the septal region nerve terminals on axon collaterals are endowed very early (at least at P3) with the apparatus for action potential-induced, exocytotic release of ACh. In contrast, the appearance of feedback inhibition via presynaptic muscarinic autoreceptors is delayed. Autoinhibition due to endogenously released ACh can be detected only later, most probably when endogenous ACh concentrations in the septal nuclei have reached a threshold value.  相似文献   

17.
The effects of acetylcholine on both pyramidal neurons and interneurons in the area CA1 of the rat hippocampus were examined, using intracellular recording techniques in an in vitro slice preparation. In current-clamp mode, fast local application of acetylcholine (ACh) to the soma of inhibitory interneurons in stratum radiatum resulted in depolarization and rapid firing of action potentials. Under voltage-clamp, ACh produced fast, rapidly desensitizing inward currents that were insensitive to atropine but that were blocked by nanomolar concentrations of the nicotinic alpha7 receptor-selective antagonists alpha-bungarotoxin (alphaBgTx) and methyllycaconitine. Nicotinic receptor antagonists that are not selective for alpha7-containing receptors had little (mecamylamine) or no effect (dihydro-beta-erythroidine) on the ACh-induced currents. Glutamate receptor antagonists had no effect on the ACh-evoked response, indicating that the current was not mediated by presynaptic facilitation of glutamate release. However, the current could be desensitized almost completely by bath superfusion with 100 nM nicotine. In contrast to those actions on interneurons, application of ACh to the soma of CA1 pyramidal cells did not produce a detectable current. Radioligand-binding experiments with [125I]-alphaBgTx demonstrated that stratum radiatum interneurons express alpha7-containing nAChRs, and in situ hybridization revealed significant amounts of alpha7 mRNA. CA1 pyramidal cells did not show specific binding of [125I]-alphaBgTx and only low levels of alpha7 mRNA. These results suggest that, in addition to their proposed presynaptic role in modulating transmitter release, alpha7-containing nAChRs also may play a postsynaptic role in the excitation of hippocampal interneurons. By desensitizing these receptors, nicotine may disrupt this action and indirectly excite pyramidal neurons by reducing GABAergic inhibition.  相似文献   

18.
The 3H-overflow from slices of the rabbit caudate nucleus preincubated with tritiated dopamine (DA), or choline, and then superfused and stimulated twice with 3,4-diaminopyridine (3,4-DAP; 25 microM, 1 min), was explored as an in vitro model for evoked release of DA, or acetylcholine (ACh), respectively. In both cases the 3,4-DAP-evoked 3H-overflow was tetrodotoxin-sensitive and Ca(2+)-dependent and hence most probably represents action potential-induced exocytotic release of DA or ACh, respectively. Using pairs of preferential agonists/antagonists it was shown, that evoked DA release was inhibited via presynaptic D2 autoreceptors (quinpirole/domperidone) and kappa-opioid receptors (U-50488H/norbinaltorphimine). No evidence was found for the presence of presynaptic adenosine A1 or A2 receptors on dopaminergic terminals. Moreover, 3,4-DAP-evoked DA release was unaffected by increased intracellular cyclic AMP levels or by drugs affecting the NO/guanylate cyclase pathway. In a similar manner it was shown that 3,4-DAP-evoked ACh release was inhibited via presynaptic muscarine autoreceptors (oxotremorine/atropine) and dopamine D2 heteroreceptors (quinpirole/domperidone). Again, no evidence for the involvement of the NO/guanylate cyclase system in the modulation of ACh release was found, whereas the presence of inhibitory adenosine A1 receptors, but not of facilitatory A2 receptors, could be clearly established. It is concluded, that 3,4-DAP-evoked 3H-overflow from rabbit caudate nucleus slices preincubated with [3H]DA or [3H]choline, represents a simple and useful in vitro model for action potential-induced DA or ACh release, respectively. Moreover, at least in this model or rabbit brain region, facilitatory adenosine A2 receptors and the NO/guanylate cyclase system seem not to be involved in the release of these transmitters.  相似文献   

19.
We explored the relationship between neurite outgrowth and the onset of synaptic activity in the central neuropil of the leech embryo in vivo. To follow changes in early morphology and the onset of synaptic activity in the same identified neuron, we obtained whole-cell patch-clamp recordings and fluorescent dye fills from dorsal pressure-sensitive (P) cells, the first neurons that could be reliably identified in the early embryo. We followed the development of the P cell from the first extension of neurites to the elaboration of an adult-like arbor. After the growth of primary neurites, we observed a profuse outgrowth of transient neurites within the neuropil. Retraction of the transient neurites left the primary branches studded with spurs. After a dormant period, stable secondary branches grew apparently from the spurs and became tipped with terminals. At this time, neurites of the Retzius (R) cell, a known presynaptic partner in the adult, were observed to apparently contact the terminals. Although voltage-dependent currents were seen in the P cell at the earliest stage, spontaneous synaptic activity was only observed when terminals had formed. Spontaneous release was observed before evoked release could be detected from the R cell. Our results suggest that transient neurites are formed during an exploratory phase of development, whereas the more precisely timed outgrowth of stable neurites from the spurs signals functional differentiation during synaptogenesis. Because spurs have also been observed in neurons of the mammalian brain, they may constitute a primordial synaptic organizer.  相似文献   

20.
To determine whether the charybdotoxin-sensitive subtypes of voltage-gated K+ channels (Kv1.2 and Kv1.3) exist in inhibitory pre-synaptic terminals, effects of K+ channel blockers including TEA, charybdotoxin (ChTX), iberiotoxin (IbTX), kaliotoxin (KTX) and margatoxin (MgTX) on the inhibitory transmission were examined with cultured rat hippocampal neurons. Monosynaptic inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of single presynaptic neurons were recorded from the whole-cell clamped postsynaptic neurons. In the presence of TEA, application of ChTX greatly increased the amplitude of IPSCs. A specific maxi-K+ channel blocker IbTX failed to augment IPSCs. KTX and MgTX, both of which block Kv1.3 but not Kv1.2, mimicked the facilitating effect of ChTX. In the absence of TEA, application of ChTX increased the IPSC amplitude significantly, while IbTX was without effect. These results indicate that the ChTX-sensitive subtypes of voltage-gated K+ channels, most likely Kv1.3, contribute to the repolarization of action potentials at presynaptic terminals of hippocampal inhibitory neurons, and that the ChTX-induced facilitation of the transmission can be explained by its effects on the Kv channels rather than maxi-K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号