首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
van Manen HJ  Otto C 《Nano letters》2007,7(6):1631-1636
We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We show that resonant Raman imaging of flavocytochrome b558 at 413.1 nm excitation in QD-labeled neutrophilic granulocytes or nonresonant Raman imaging of proteins and lipids at 647.1 nm excitation in QD-labeled macrophages can be integrated with linear one-photon excitation and nonlinear continuous-wave two-photon excitation fluorescence microscopy of QDs, respectively. The enhanced information content of these two hybrid Raman fluorescence methods provides new multiplexing possibilities for single-cell optical microscopy and intracellular chemical analysis.  相似文献   

2.
In conventional two-photon excitation fluorescence microscopy, the numerical aperture of the objective determines the lateral resolution and the depth of field. In some situations, as with functional imaging of dynamic events distributed in live biological tissue, an improved temporal resolution is needed; as a consequence, it is imperative to use optics with a high depth of field to simultaneously image objects at different axial positions. With a conventional microscope objective, increasing the depth of field is achieved at the expense of lateral resolution. To overcome this limitation, we have incorporated an axicon in a two-photon excitation fluorescence microscopy system; measurements have shown that an axicon provides a depth of field in excess of a millimeter, while the lateral resolution is maintained at the micrometer scale. Thus axicon-based two-photon microscopy has been shown to yield a high-resolution projection image of a sample with a single 2D scan of the laser beam while maintaining the improved tissue penetration typical of two-photon microscopy.  相似文献   

3.
The two-photon excited fluorescence of a conjugated polyelectrolyte (CPE), PPESO3, was studied in methanol and in water. The photophysical and amplified quenching properties of the CPE observed under two-photon excitation were comparable to the results obtained under one-photon excited conditions. Two-photon fluorescence microscopy performed with PPESO3-coated silica nanoparticles in HeLa cells provided images with significantly improved resolution compared to one-photon microscopy, demonstrating the utility of the CPE as a fluorescent probe in two-photon fluorescence cell imaging.  相似文献   

4.
《工程(英文)》2017,3(3):402-408
The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.  相似文献   

5.
采用微波辐射加热的方法,以亚碲酸钠(Na2TeO3)作碲源,以谷胱甘肽(GSH)作稳定剂,在水相中合成出高质量的CdTe量子点。所合成量子点的发射波长从515~630nm可调,荧光量子产率(PLQYs)最高达95%。利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、紫外-可见吸收光谱(UV-Vis)和荧光发射光谱(PL)等技术表征产物的物相结构和光学性质。用双光子激发荧光法研究CdTe量子点的双光子吸收性质。用双光子激发荧光成像技术,以发红光的CdTe量子点作为双光子荧光探针成功标记了人肺腺癌细胞(A549)。  相似文献   

6.
Ridsdale A  Micu I  Stys PK 《Applied optics》2004,43(8):1669-1675
Most commercial laser-scanning imaging systems used for confocal fluorescence microscopy can be readily adapted for use with two-photon fluorescence excitation. We report here on the details of the conversion of the Nikon C1 (product released November 2001) with two channels of nondescanned detection of two-photon-excited fluorescence. One of the goals of the design was to utilize off-the-shelf components as much as possible to minimize the use of custom machining and electronics assembly. We also give some initial characterization of the imaging properties of the system.  相似文献   

7.
Abstract. Wide-field fluorescence lifetime imaging with spectral resolution and optical sectioning has been performed to achieve five-dimensional fluorescence microscopy. Spectral filtering has been shown to have the potential to provide functional information about biological tissue by simultaneously measuring the spectral/lifetime signature of the sample. The potential to use multispectral imaging to separate cellular components spatially by their different emission wavelengths has also been demonstrated thus reducing artefacts in the calculated lifetime maps. The instrument is based on diode-pumped solid-state laser technology and an ultrafast gated optical image intensifier. Also reported is the use of a picosecond blue laser diode as the excitation source to produce a fluorescence lifetime microscope with a footprint of less than 0.25m2.  相似文献   

8.
Single-stranded telomeric DNA tends to form a four-base-paired planar structure termed G-quadruplex. This structure was easily formed in vitro in the presence of monovalent cations. However, the existence of this structure in native human telomeres is unclear. Here we address this important question through the distinctive properties of 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) upon binding to various DNA structures. Although the fluorescence of BMVC increases significantly in the presence of DNA, BMVC has high sensitivity and binding preference to quadruplex d(T(2)AG(3))(4) over duplex DNA. In addition, the fluorescent emissions were characterized around 575 nm for quadruplex d(T(2)AG(3))(4) and 545 nm for most of duplex DNA. The 575-nm fluorescence emissions were detected in the mixtures of 2 nM BMVC with the chromosomal DNA that were extracted from human cells, suggesting the presence of quadruplex structure in human nucleus. Further analyzing the BMVC fluorescence at the ends of metaphase chromosomes and other regions of chromosomes, we detected the quadruplex-binding BMVC fluorescence at telomere-proximal regions. Together these results provide the first evidence for the presence of quadruplex structures in human telomeres.  相似文献   

9.
D Zhang  H Shen  G Li  B Zhao  A Yu  Q Zhao  H Wang 《Analytical chemistry》2012,84(18):8088-8094
Fluorescence anisotropy (FA) is a homogeneous, ratiometric, and real-time analytical technology. By selective labeling of a guanine (G)-quadruplex motif with tetramethylrhodamine (TMR), here, it is established that a large reduction in FA response can be specifically associated with the unfolding → folding transition of G-quadruplex structures. On the basis of fluorescence intensity, polarization and lifetime analysis, and molecular docking simulation, the mechanism was found to be that the labeled fluorophore (TMR) can intramolecularly interact with adjacent G bases in an unfolded G-quadruplex motif, which allows for the photoinduced electron transfer (PET) occurring between the fluorophore and G bases, leading to a short fluorescence lifetime. Upon the folding of the motif to form a stable G-quadruplex structure, the intramolecular interactions and the concomitant PET could be eliminated with an increased fluorescence lifetime, leading to a large reduction in the FA response. On the basis of this mechanism, a novel, specific, and sensitive FA approach was developed for the detection of biologically and functionally important G-quadruplex structures. The approach is examined and validated using one normal G-quadruplex motif, five mutants, and six small cations and is potentially applicable to the study of G-quadruplexes at single molecule level, ligand screening, profiling of highly ordered DNA nanostructures, and biosensing.  相似文献   

10.
Blanca CM  Saloma C 《Applied optics》1998,37(34):8092-8102
The behavior of two-photon fluorescence imaging through a scattering medium is analyzed by use of the Monte Carlo technique. The axial and transverse distributions of the excitation photons in the focused Gaussian beam are derived for both isotropic and anisotropic scatterers at different numerical apertures and at various ratios of the scattering depth with the mean free path. The two-photon fluorescence profiles of the sample are determined from the square of the normalized excitation intensity distributions. For the same lens aperture and scattering medium, two-photon fluorescence imaging offers a sharper and less aberrated axial response than that of single-photon confocal fluorescence imaging. The contrast in the corresponding transverse fluorescence profile is also significantly higher. Also presented are results comparing the effects of isotropic and anisotropic scattering media in confocal reflection imaging. The convergence properties of the Monte Carlo simulation are also discussed.  相似文献   

11.
Gan X  Gu M 《Applied optics》2000,39(10):1575-1579
Three-dimensional fluorescence spatial distributions under single-photon and two-photon excitation within a turbid medium are studied with Monte Carlo simulation. It is demonstrated that two-photon excitation has an advantage of producing much less fluorescence light outside the focal region compared with single-photon excitation. With the increase of the concentration of scattering particles in a turbid medium, the position of the maximum fluorescence intensity point shifts from the geometric focal region toward the medium surface. Further studies show that the optical sectioning property of two-photon fluorescence microscopy is degraded in thick turbid media or when the numerical aperture of an objective becomes low.  相似文献   

12.
Fu L  Gan X  Gu M 《Applied optics》2005,44(34):7270-7274
We report on the experimental investigation into the characterization of two-photon fluorescence microscopy based on the separation distance of a single-mode optical fiber coupler and a gradient-index (GRIN) rod lens. The collected two-photon fluorescence signal exhibits a maximum intensity at a defined separation distance (gap length) where the increasing effective excitation numerical aperture is balanced by the decreasing confocal emission collection. A maximum signal is found at gap lengths of approximately 2, 1.25, and 1.75 mm for GRIN lenses with pitches of 0.23, 0.25, and 0.29 wavelength at 830 nm. The maximum two-photon fluorescence signal collected corresponds to a threefold reduction of axial resolution (38.5 microm at 1.25 mm), compared with the maximum resolution (11.6 microm at 5.5 mm), as shown by the three-dimensional imaging of 10 microm beads. These results demonstrate an intrinsic trade-off between signal collection and axial resolution.  相似文献   

13.
Near-field scanning optical microscopy (NSOM) is a high-resolution scanning probe technique capable of obtaining simultaneous optical and topographic images with spatial resolution of tens of nanometers. We have integrated time-correlated single-photon counting and NSOM to obtain images of fluorescence lifetimes with high spatial resolution. The technique can be used to measure either full fluorescence lifetime decays at individual spots with a spatial resolution of <100 nm or NSOM fluorescence images using fluorescence lifetime as a contrast mechanism. For imaging, a pulsed Ti:sapphire laser was used for sample excitation and fluorescent photons were time correlated and sorted into two time delay bins. The intensity in these bins can be used to estimate the fluorescence lifetime at each pixel in the image. The technique is demonstrated on thin films of poly(9,9'-dioctylfluorene) (PDOF). The fluorescence of PDOF is the results of both inter- and intrapolymer emitting species that can be easily distinguished in the time domain. Fluorescence lifetime imaging with near-field scanning optical microscopy demonstrates how photochemical degradation of the polymer leads to a quenching of short-delay intrachain emission and an increase in the long-delay photons associated with interpolymer emitting species. The images also show how intra- and interpolymer species are uniformly distributed in the films.  相似文献   

14.
Cao Z  Huang CC  Tan W 《Analytical chemistry》2006,78(5):1478-1484
Telomeres carry important biological functions such as the protection of chromosomes. In this paper, we have developed a fluorescence anisotropy imaging system for monitoring DNA digestion inside live cells. The nuclease-resistant capability of telomere-like ssDNAs in nuclei of human breast cancer cells is studied. We found that those oligonucleotides were clearly more stable than regular DNA sequences during the time course of the experiments. We conclude that the G-quadruplex structure of the telomere-like ssDNA makes it inherently more stable in intracellular environments than non-G-quadruplex structures. This will help us understand why the G-quadruplex forming telomere sequences were adopted by almost all eukaryotic cells to protect the ends of chromosomes. This is the first time such a phenomenon was observed in live cells. Our fluorescence anisotropy imaging provides an efficient way to directly monitor DNA digestion in any region of live cells in real time, providing insights into many important and related intracellular processes.  相似文献   

15.
We demonstrate the capability of using immunotargeted gold nanoshells as contrast agents for in vitro two-photon microscopy. The two-photon luminescence properties of different-sized gold nanoshells are first validated using near-infrared excitation at 780?nm. The utility of two-photon microscopy as a tool for imaging live HER2-overexpressing breast cancer cells labeled with anti-HER2-conjugated nanoshells is then explored and imaging results are compared to normal breast cells. Five different imaging channels are simultaneously examined within the emission wavelength range of 451-644?nm. Our results indicate that under near-infrared excitation, superior contrast of SK-BR-3 cancer cells labeled with immunotargeted nanoshells occurs at an emission wavelength ranging from 590 to 644?nm. Luminescence from labeled normal breast cells and autofluorescence from unlabeled cancer and normal cells remain imperceptible under the same conditions.  相似文献   

16.
The interaction of Tat‐conjugated PEGylated CdSe/ZnS quantum dots (QD) with the amphiphilic disulfonated aluminium phthalocyanine photosensitiser is investigated in aqueous solution and in a human breast cancer cell line. In aqueous solution, the QDs and phthalocyanine form stable nanocomposites. Using steady‐state and time‐resolved fluorescence measurements combined with singlet oxygen detection, efficient Förster resonance energy transfer (FRET) is observed with the QDs acting as donors, and the phthalocyanine photosensitiser, which mediates production of singlet oxygen, as acceptors. In cells, the Tat‐conjugated QDs localise in lysosomes and the QD fluorescence lifetimes are close to values observed in aqueous solution. Strong FRET‐induced quenching of the QD lifetime is observed in cells incubated with the nanocomposites using fluorescence lifetime imaging microscopy (FLIM). Using excitation of the QDs at wavelengths where phthalocyanine absorption is negligible, FRET‐induced release of QDs from endo/lysosomes is confirmed using confocal imaging and FLIM, which is attributed to photooxidative damage to the endo/lysosomal membranes mediated by the phthalocyanine acceptor.  相似文献   

17.
We investigate the photon efficiency of frequency-domain fluorescence lifetime imaging microscopy, using both theoretical and Monte Carlo methods. Our analysis differs from previous work in that it incorporates the data fitting process used in real experiments, allows for the arbitrary choice of excitation and gain waveforms, and calculates lifetimes as well as associated F-values from higher harmonics in the data. Using our analysis, we found different photon efficiencies to those previously reported and were able to propose optimal excitation and gain waveforms. Additionally, we suggest measurement protocols that lead to further improvement in photon efficiency. We compare our results to other techniques for lifetime imaging and consider the implications of our higher-harmonic analysis for multi-exponential lifetime determination.  相似文献   

18.
The cross-linking with reducing sugars, known as glycation, is used to increase stiffness and strength of tissues and artificial collagen-based scaffolds. Nondestructive characterization methods that report on the structures within these materials could clarify the effects of glycation. For doing this nondestructive evaluation, we employed an in situ one-photon fluorescence as well as multiphoton microscopy method that combined two-photon fluorescence and second harmonic generation signals. We incubated collagen hydrogels with glyceraldehyde, ribose, and glucose and observed an increase in the in situ fluorescence and structural alterations within the materials during the course of glycation. The two-photon fluorescence emission maximum was observed at about 460 nm. The fluorescence emission in the one-photon excitation experiment (λ(ex) = 360 nm) was broad with peaks centered at 445 and 460 nm. The 460 nm emission component subsequently became dominant during the course of glycation with glyceraldehyde. For the ribose, in addition to the 460 nm peak, the 445 nm component persisted. The glucose glycated hydrogels exhibited broad fluorescence that did not increase significantly even after 6 weeks. As determined from measuring the fluorescence intensity at the 460 nm maximum, glycation with glyceraldehyde was faster compared to ribose and generated stronger fluorescence signals. Upon excitation of glycated samples with 330 nm light, different emission peaks were observed.  相似文献   

19.
Tip-enhanced optical spectroscopy   总被引:1,自引:0,他引:1  
Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials including biological proteins, quantum structures and nanocomposite materials. In this paper, we describe microscopic techniques which rely on the enhanced electric field near a sharp, laser-irradiated metal tip. This confined light-source can be used for the excitation of various optical interactions such as two-photon excited fluorescence or Raman scattering. We study the properties of the enhanced fields and demonstrate fluorescence and Raman imaging with sub-20 nm resolution.  相似文献   

20.
We describe a novel method for quantitatively mapping fluidic temperature with high spatial resolution within microchannels using fluorescence lifetime imaging in an optically sectioning microscope. Unlike intensity-based measurements, this approach is independent of experimental parameters, such as dye concentration and excitation/detection efficiency, thereby facilitating quantitative temperature mapping. Micrometer spatial resolution of 3D temperature distributions is readily achieved with an optical sectioning approach based on two-photon excitation. We demonstrate this technique for mapping of temperature variations across a microfluidic chip under different heating profiles and for mapping of the 3D temperature distribution across a single microchannel under applied flow conditions. This technique allows optimization of the chip design for miniaturized processes, such as on-chip PCR, for which precise temperature control is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号