首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
网络中存在许多设计和优化问题,其中相当一部分属于NP类型。传统的解法由于计算复杂度过大而失效。为了降低计算机网络的时延和运营费用以改进网络性能,采用量子进化算法优化计算机网络中路由选择问题,深入研究了量子进化算法及其在路由选择优化问题中的应用,并对量子进化算法进行了改进,使之更适合这类问题的求解。仿真实验结果表明,同传统优化算法相比该方法对求解网络的路由选择具有很大优越性。研究结果不仅对各类网络的优化问题有一定的应用价值,而且也扩展了量子进化算法的应用范围。  相似文献   

2.
利用蚁群运动的遍历性、随机性和规律性特点,分析了车辆导航系统路由选择问题的蚁群优化算法,仿真结果 表明该方法是一种简单有效的算法。  相似文献   

3.
计算机网络技术的不断发展,离不开网络通信技术的发展。现在成出不穷的网络应用给如今有限的网络通信资源带来了极大的压力,急需一种更为先进更为有限的通信手段来解决这种发展与资源之间的矛盾。组播通信技术是近些年的一个研究热点,它能够在一定程度上缓解当前计算机网络通信领域所存在的矛盾和问题。基于此,本文结合了遗传算法和蚁群算法理论,对多QoS组播路由算法进行深入的研究。  相似文献   

4.
通过研究蚂蚁寻食的轨迹,分析推理出一种得到最优路径的并行算法,由于其灵感来源于蚂蚁,所以起名为蚁群算法。蚁群算法是近年才发展起来的,成功应用于很多领域,如车辆调度问题、分布式人工智能研究、负载平衡、大规模集成电路设计、工厂生产计划制定方面、图像着色和路由算法方面等等。本文主要是运用蚁群算法,寻找Ad Hoc网络中最优路由路径,使整个Ad Hoc网络成为一个稳定可靠的网络系统。  相似文献   

5.
该文主要介绍用于Internet路由选择的两种常用算法:Dijkstra算法和Bellman-Ford算法,以及对这两种算法优缺点进行分析.并提出了解决这两种算法问题的改进思路。  相似文献   

6.
随着互联网络的快速发展和网络用户数量的不断攀升,用户对网络服务质量和网络性能等方面的需求也不断增强.智能路由选择问题正成为网络通信领域中的一个热点问题,本文提出了基于蚁群算法的多路由约束参数模糊评判的路由算法,该路由算法不但能够综合利用多个路由参数的组合优化作用求解最优路由,而且,又能充分利用蚁群算法的良好特性.该路由算法能够有效地解决用户对网络服务、网络性能等方面的需求问题.  相似文献   

7.
遗传蚁群算法的WSN移动代理路由算法研究   总被引:1,自引:0,他引:1  
针对常用路由优化算法存在收敛速度慢、易陷入局部最优等难题,提出了一种遗传蚁群算法的WSN移动代理路由方法(GA-ACA)。首先利用遗传算法的全局搜索能力快速找到较优解,然后将较优解转换成蚁群算法的初始信息素,最后采用蚁群算法收敛速度快的优点,找到移动代理路由全局最优解。仿真结果表明,相对于其他移动代理路由算法,GA-ACA加快了收敛速度,能在更短的时间内找到最优移动代理路由,减少了平均能量消耗和网络延时,提高了WSN整体性能。  相似文献   

8.
为有效解决无线移动自组网中多约束服务质量(QoS)路由问题,提出结合QoS条件下的改进型蚁群算法.该算法对QoS约束条件进行简化,只考虑影响网络因子的主要指标,提高了算法的工程实用性,并在理论上证明该算法的收敛性.对传统蚁群算法的信息素进行改善,通过对该算法局部和全局收敛性的研究,提出了普遍意义下的收敛条件,为这一类约束条件下的蚁群算法进一步研究奠定了良好的基础.  相似文献   

9.
距离向量路由选择算法浅析   总被引:1,自引:0,他引:1  
介绍了在路由选择协议中广泛使用的一种距离向量路由选择算法,并针对在使用中出现的问题给出常见的解决方法。  相似文献   

10.
提出了一种基于遗传多蚁群的QoS组播路由算法,前期利用遗传算法的快速性、全局收敛性生成蚁群算法的初期信息素;后期引入多蚁群思想,克服蚁群算法容易陷入局部最优,导致算法停滞的缺点.仿真结果表明,该算法在多节点情况下具有更强的寻优能力和可靠性,是一种有效的QoS路由方法.  相似文献   

11.
原对偶遗传算法(PDGA)较好地保持了种群的多样性和较强的稳定性,改善了在搜索空间里的搜索能力,使搜索更为有效,但没有利用系统中的反馈信息,导致无为的冗余迭代,求解效率不高。而蚁群算法是通过信息素的累积和更新来收敛于最优路径,具有分布、并行、全局收敛能力,但是搜索初期信息素匮乏,导致算法速度慢。通过将两种算法进行融合,克服两种算法各自的缺陷,优势互补,形成一种全局寻优性能好,稳定性强,效率高的启发式算法,通过仿真计算,表明融合算法的性能优于遗传算法,原对偶遗传算法和蚁群算法。  相似文献   

12.
云计算环境下基于遗传蚁群算法的任务调度研究   总被引:1,自引:0,他引:1  
对云计算中任务调度进行了研究,针对云计算的编程模型框架,提出一种融合遗传算法与蚁群算法的混合调度算法。在该求解方法中,遗传算法采用任务-资源的间接编码方式,每条染色体代表一种具体调度方案;选取任务平均完成时间作为适应度函数,再利用遗传算法生成的优化解,初始化蚁群信息素分布。既克服了蚁群算法初期信息素缺乏,导致求解速度慢的问题,又充分利用遗传算法的快速随机全局搜索能力和蚁群算法能模拟资源负载情况的优势。通过仿真实验将该算法和遗传算法进行比较,实验结果表明,该算法是一种云计算环境下有效的任务调度算法。  相似文献   

13.
论文提出了一种将蚁群算法与遗传算法融合的新算法。采用蚁群算法进行寻径生成初始群体,利用遗传算法对路径进行优化。仿真结果表明此算法是可行的、有效的。  相似文献   

14.
基于遗传蚁群算法的QoS路由算法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用遗传算法的快速全局搜索能力和蚁群算法的正反馈收敛机制,引入遗传蚁群算法(Genetic Algorithm Ant Colony algorithm)GAAC来解决QoS路由问题。算法设计的基本思想是首先由遗传算法产生较优解,较优的路径留下信息素,其他路径不改变,然后在有一定初始信息素分布的情况下,用蚁群算法求精解。仿真表明算法比单一采用遗传算法和蚁群算法进行路由选择具有更好的性能,且更适合于动态网络环境下的QoS路由选择。  相似文献   

15.
基于蚁群遗传混合算法的QoS组播路由   总被引:3,自引:0,他引:3       下载免费PDF全文
具有延迟、延迟抖动、带宽、丢包率等服务质量约束的组播路由问题具有NP完全的复杂度。基于蚁群优化算法和遗传算法,提出解决QoS约束组播路由问题的混合算法。利用遗传算法和蚁群优化算法各自的优点,使用蚁群优化算法选择种群,遗传算法优化蚂蚁遍历所得到的解。仿真实验结果表明,该算法可满足各个约束条件,且全局寻优性能好,能够满足网络服务质量要求。  相似文献   

16.
基于车辆路径问题的蚁群遗传融合优化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
在对车辆路径问题(VRP)分析的基础上,为之建立了数学模型,提出了一种适合求解该问题的蚁群遗传融合优化算法。该算法首先采用蚁群算法产生阶段最优解,然后利用遗传算法的变异算子对阶段最优解进一步优化。仿真结果表明,该算法能高效解决VRP,并且优化效果较好。  相似文献   

17.
徐德明 《计算机时代》2012,(11):31-32,36
为了提高基本蚁群算法的收敛性能和全局求解能力,对基本蚁群算法进行了改进,提出了一种改进的遗传混合蚁群算法。在每代进化中保留最优解和次优解的公共解集后引入遗传操作中的交叉算子进行运算,并采用自适应改变信息素挥发系数的方法,加快了算法收敛速度,提高了解的全局性。通过对TSP问题的仿真运算表明,改进的遗传混合蚁群算法在收敛速度和解的全局性上都有较大的改善。  相似文献   

18.
基于遗传算法和蚁群算法融合的QoS路由算法*   总被引:1,自引:2,他引:1  
面向QoS路由问题,设计了一种基于遗传算法和蚁群算法融合的QoS路由算法(QoS routing algorithm according to the combination of the genetic algorithm and ant colony algorithm,GAACO_QoS).利用遗传算法生成初始解,将其转换为蚁群算法所需的信息素初值,然后利用蚁群算法求取最优解.设置遗传算法控制函数来控制遗传算法和蚁群算法融合的适当时机.通过与遗传算法以及蚁群算法的比较,进一步说明算法的有效性.  相似文献   

19.
如何在资源受限的无线传感器网络中进行高效的数据路由是无线传感器网络研究的热点之一。基于群智能优化技术的蚁群优化算法被广泛应用于网络路由算法。提出一种无线传感器网络蚁群优化路由算法,能够保持网络的生存时间最长,同时能找到从源节点到基站节点的最短路径;采用的多路数据传输也可提供高效可靠的数据传输,同时考虑节点的能量水平。仿真结果表明:提出的算法延长了无线传感器网络的寿命,实现无线传感器网络在通信过程中快速、节能的路由。  相似文献   

20.
分析了公路煤运的特点,从选择策略和信息素挥发速度两方面简要改进了基本蚁群算法,较好地克服了其最优解不稳定和易陷入局部最优解的缺点;根据煤炭联盟运输调度模型的特点,从构造三类分支回路入手构造了模型的可行解,解决了用蚁群算法时不易发现可行解的问题;最后用改进的蚁群算法对模型进行了求解,实验分析结果表明算法有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号