首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The miniaturization of cutting processes shows process specific size-effects like the exponential increase of the specific cutting force k c with decreasing depth of cut h. Experiments were carried out in an orthogonal turning process. The influence of different process parameters on the results was investigated separately to identify process specific size-effects. Two materials were studied: a normalized steel AISI 1045 and an annealed AISI O2. To complement the experiments, parameter variations were performed in two-dimensional, thermo-mechanically coupled finite element simulations using a rate-dependent material model and analyzed by similarity mechanics. The influence of rounded cutting-edges on the chip formation process and the plastic deformation of the generated surface were determined numerically. The complex physical effects in micro-cutting were analyzed successfully by finite element simulations and compared to experiments.  相似文献   

2.
For the production of small quantities of micro devices, machining is a low cost alternative to lithographic processing techniques. However, machining shows process specific size-effects upon miniaturization to the micrometer regime. Hence, the orthogonal turning process is chosen to study the influence of process parameters like uncut chip thickness h, cutting velocity vc and cutting edge radius rβ on the cutting force and the surface plastification by two-dimensional, thermo-mechanically coupled finite element simulations. A rate-dependent plasticity law is used for investigation of a normalized medium carbon steel (AISI 1045). Furthermore, the characteristics of the influences of the different parameters are analyzed mathematically by similarity mechanics. In particular, the frictional effects on the cutting process are studied in detail using a friction coefficient μ based on experimental results, and the influences of the process parameters on the cutting force and the plastic deformation of the surface layer are determined numerically. These results are compared with experimental measurements. The specific cutting forces are analyzed and discussed in detail. Size-effects observed experimentally are also found by numerical simulations.  相似文献   

3.
Shear deformation that dominates elementary chip formation in metal cutting greatly relies on crystal anisotropy. In the present work we investigate the influence of crystallographic orientation on shear angle in ultra-precision orthogonal diamond cutting of single crystalline copper by joint crystal plasticity finite element simulations and in-situ experiments integrated in scanning electron microscope. In particular, the experimental cutting conditions including a straight cutting edge are the same with that used in the 2D finite element simulations. Both simulations and experiments demonstrate a well agreement in chip profile and shear angle, as well as their dependence on crystallography. A series of finite element simulations of orthogonal cutting along different cutting directions for a specific crystallographic orientation are further performed, and predicated values of shear angle are used to calibrate an extended analytical model of shear angle based on the Ernst–Merchant relationship.  相似文献   

4.
This paper presented a finite element simulation model for the analysis of AISI D2 steel turning with TiAlN-coated inserts. In this study, material constitutive model of hardened AISI D2 steel (HRC62) was built based on power law relationship, which was used in the FEM codes to describe the effect of strain, strain rate, and temperature on the material flow stress. A damage model was employed to predict the chip separation. Cutting edge radius and thickness of TiAlN coating were obtained by micro-optical system and SEM, respectively. The average friction coefficients were obtained by ball-on-disk friction test using UMT-2 high-speed tribometer. Numerical simulations of AISI D2 steel turning were performed using AdvantEdge? software. The simulated results of forces and chip morphology showed good agreement with the experimental results, which validated the precision of the process simulation method. The shear stress on the interface between coating and substrate of cutting tool was analyzed. And the maximal shear stress between coating and substrate was found on the cutting edge roundness near the flank face of cutting tool.  相似文献   

5.
This paper investigates the effects of edge radius of a round-edge coated carbide tool on chip formation, cutting forces, and tool stresses in orthogonal cutting of an alloy steel 42CrMo4 (AISI 4142H). A comprehensive experimental study by end turning of thin-walled tubes is conducted, using advanced coated tools with well-defined cutting edge radii ranging from 5 to 68 microns. In parallel, 2-D finite element cutting simulations based on Lagrangian thermo-viscoplastic formulation are used to predict the cutting temperatures and tool-stress distributions within the tool coating and substrate. The results obtained from this study provide a fundamental understanding of the cutting mechanics for the coated carbide tool used, and can assist in the optimization of tool edge design for more complex geometries, such as chamfered edge. Specifically, the results obtained from the experiments and simulations of this study demonstrated that finite element analysis can significantly help in optimizing the design of coated cutting tools through the prediction of tool stresses and temperatures, especially within the coating layer.  相似文献   

6.
FEM mesh-dependence in cutting process simulations   总被引:1,自引:0,他引:1  
The process simulations based on FEM techniques have been investigated for many years, some fundamental problems are still unsolved, e.g. the element size effect on the computational results. In present contribution, orthogonal cutting simulations of AISI4340 steel are considered. The major concerns are accuracy of computational results, influence of element size and effects of damage model in accommodating modeling of failure phenomenon for cutting process simulations. Numerical simulations are verified with the measured values of cutting force by considering certain case of influencing cutting parameters combination taken from literature. Element size is treated to be the most influencing constituent in the cutting process simulations. The chip morphology is related to the adiabatic assumption considered in the process simulation, the feed value and the element size. The simulation results are presented by neglecting temperature effects to show the influence of failure criterion based on plastic displacement of the numerical results. Though the chip morphology and shear band formation are most sensitive to the element size, the cutting force of process simulations is hardly influenced. The formation of saw-tooth chip in the present simulations is the result of adiabatic shear band at the tool tip and propagating towards the chip’s outer surface. The present work confirms that the effect of element size on computational results is reduced significantly if the failure criterion in the process simulation is controlled by a characteristic element length considered from the progressive damage model.  相似文献   

7.
In this paper, the residual stresses on workpiece surface after cutting operations are studied by means of 3D finite element method (FEM) simulations and the results are compared with the experiments. In particular, the effects of feed rate and tool nose radius on the final workpiece residual stresses when turning AISI 1045 steel bars were analyzed; two different approaches were utilized for the simulative models. In the first approach incremental Lagrangian and Eulerian solvers were coupled to reach both mechanical and thermal steady state conditions performing a single cutting pass, while the second approach consisted of an incremental Lagrangian simulation in which consecutive turning passes were considered in order to reach mechanical and thermal steady state. The simulation results were finally compared with the experimental ones: the agreement between them is satisfactory even if the numerical errors are, in some cases, remarkable.  相似文献   

8.
Prediction of specific force coefficients from a FEM cutting model   总被引:1,自引:1,他引:0  
This paper presents a method to obtain the specific cutting coefficients needed to predict the milling forces using a mechanistic model of the process. The specific coefficients depend on the tool–material couple and the geometry of the tool, usually being calculated from a series of experimental tests. In this case, the experimental work is substituted for virtual experiments, carried out using a finite element method model of the cutting process. Through this approach, the main drawbacks of both types of models are solved; it is possible to simulate end milling operations with complex tool geometries using fast mechanistic models and replacing the experimental work by virtual machining, a more general and cheap way to do it. This methodology has been validated for end milling operations in AISI 4340 steel.  相似文献   

9.
研究表明,切削过程中的刀具磨损与刀面温度、刀/屑和刀/工界面的接触压力及相对滑动速度等切削过程变量有关,借助于有限元分析法可对这些切削过程变量进行仿真预测。基于“差分”磨损模型,提出了一种对切削过程中刀具轮廓磨损变化的预测方法,以硬质合金刀具切削AISI1045材料为例,介绍了该方法的原理和实施步骤,并对刀具前后刀面磨损的预测结果进行了试验验证,分析了预测结果与试验结果存在误差的原因。  相似文献   

10.
A realistic finite element model considering the ploughing effect of cutting edge fillet was developed in high speed machining. Taking the hardened tool steel AISI D2 as the object of research, the cutting force and chip morphology were reasonably analyzed and compared with the actual results of cutting experiments, which verified the correctness of the model. Then, based on the model, the formation process of single serrated tooth was analyzed, while the effects of cutting heat and temperature field, material hardness and cutting speed on chip formation were explored. The research results indicate that: (1) The ploughing-effect has a great impact on the feed force, and for hardened tool steel AISI D2, the stagnation angle of 30o is more appropriate. (2) Also, stress concentration appears and shear slipping occurs along the shear plane in the process of serrated chip formation. The strain rate on the shear slipping surface is much greater than other places and the temperature gradient perpendicular to the shear plane is relatively higher. (3) The cutting force becomes larger with increasing the hardness value of workpieces, which causes the chip to more likely to produce serrated chips. (4) The fluctuation of cutting force is more significant as the cutting speed increases, which puts forward higher requirements for the tool and machine tool.  相似文献   

11.
Orthogonal cutting of unidirectional fiber-reinforced polymer composites was analyzed using the finite element method. A dual fracture process was used to simulate chip formation incorporating both the maximum stress and Tsai—Hill failure criteria. All aspects of the cutting tool geometry are considered in the model including the tool rake and clearance angles, nose radius and wear land, as well as friction between the tool and work material. Predictions for the cutting forces from numerical simulations are verified with experimental measurements for orthogonal trimming of unidirectional graphite/epoxy. The principal cutting force predictions agree very well with those obtained from experiments. The influence of fiber orientation and tool geometry on the fracture stress are highlighted and their effects on the material removal process in orthogonal trimming of reinforced polymers are discussed.  相似文献   

12.
Precision hard machining is an interesting topic in manufacturing die and mold, automobile parts, and scientific research. While the hard machining has benefit advantages such as short cutting cycle time, process flexibility, and low surface roughness, there are several disadvantages such as high tooling cost, need of rigid machine tool, high cutting stresses, and residual stresses. Especially, tool stresses should be understood and dealt with to achieve successful performance of finish hard turning with ceramic cutting tool. So, the influence of cutting parameters on cutting stresses during dry finish turning of hardened (52 HRC) AISI H13 hot work steel with ceramic tool is investigated in this paper. For this aim, a series finish turning tests were performed, and the cutting forces were measured in tests. After literature procedure about finite element model (FEM), FEM is established to predict cutting stresses in finish turning of hardened AISI H13 steel with Ceramic 650 grade insert. As shown, effect of the cutting parameters on cutting tool stresses in finish turning of AISI H13 steel is obtained. The suggested results are helpful for optimizing the cutting parameters and decreasing the tool failure in finish turning applications of hardened steel.  相似文献   

13.
This work focuses on the chip formation during gun drilling of a 50CrMo4 (DIN 1.7228, AISI 4150) steel grade with a fixed set of cutting parameters and a fresh coated tool. Chip roots were investigated by means of quick stop experiments providing a measured chip width d at the chip root. Furthermore, the tool-chip contact length, L, was measured with high accuracy. Rastegaev compression tests were performed at different temperatures and strain rates for material characterization. The measured data was fit with the Johnson–Cook material model. A 2D finite element (FE) model of the orthogonal cutting process was set up starting with modelling data from literature. A parameter study was performed to determine the sensitivity of the prediction of d and L to the input parameters, i.e., the discretization, the modelling of friction and the material model. The presented error analysis of both the experimental and the numerical investigations shall serve as error estimation for similar FE simulations of the cutting process aiming at the prediction of the tool loading and/or the chip formation and breaking. Authors who have to rely on literature data may use the results presented in this work to estimate the resulting error.  相似文献   

14.
A better understanding of heat partition between the tool and the chip is required in order to produce more realistic finite element (FE) models of machining processes. The objectives are to use these FE models to optimise the cutting process for longer tool life and better surface integrity. In this work, orthogonal cutting of AISI/SAE 4140 steel was performed with tungsten-based cemented carbide cutting inserts at cutting speeds ranging between 100 and 628 m/min with a feed rate of 0.1 mm/rev and a constant depth of cut of 2.5 mm. Cutting temperatures were measured experimentally using an infrared thermal imaging camera. Chip formation was simulated using a fully coupled thermo-mechanical finite element model. The results from cutting tests were used to validate the model in terms of deformed chip thickness and cutting forces. The coupled thermo-mechanical model was then utilised to evaluate the sensitivity of the model output to the specified value of heat partition. The results clearly show that over a wide range of cutting speeds, the accuracy of finite element model output such as chip morphology, tool–chip interface temperature, von Mises stresses and the tool–chip contact length are significantly dependent on the specified value of heat partition.  相似文献   

15.
This paper presents prediction and validation of micro-milling cutting forces of AISI H13 steel at hardnesses between 35 and 60 HRC. The cutting forces are predicted based on an approach considering the full kinematics of the cutting tool including the run-out effect, effects of the cutting velocity and tool geometry, ploughing and chip formation phenomena and the hardness of the AISI H13 steel. A plane strain dynamic thermo-mechanical finite element (FE) model of orthogonal cutting is used to predict the cutting forces where the geometry of the cutting tool edge is modelled based on scanning electron microscope measurements. A constitutive elastic–plastic isotropic material model describing the relationship between stresses, strains, strain rates and hardnesses is modelled and implemented into ABAQUS/Explicit FE code by the user-defined subroutine VUMAT. Finite element analyses (FEA) are employed to obtain the relationship between cutting forces, uncut chip thickness, cutting velocity and material hardness. Numerous FEA are performed at different uncut chip thicknesses (0–20?μm), cutting velocities (104.7–4,723?mm/s) and hardnesses (35–60 HRC) using the FE model of orthogonal cutting. The full kinematics of the cutting tool including the run-out effect and the FE-predicted cutting forces are incorporated to predict the micro-milling cutting forces. The predicted micro-milling cutting forces have been experimentally validated at hardness of 43.2 HRC at different feed rates and spindle speeds. The result showed that the cutting forces and cutting temperatures increase by increasing the hardness of the AISI H13 while the stability limits of the process decrease by increasing the hardness.  相似文献   

16.
利用DEFORM-3D软件,对多层复合涂层刀具的切削过程进行三维有限元仿真研究,获得了切削过程中的切削温度、切削力和刀具应力等参数,并进行了相关的切削实验对比.实验结果表明,仿真所得的切削温度和切削力结果与实验结果能够较好地吻合,仿真所得的刀具应力结果能够较好地说明涂层的破坏.该仿真方法可以作为研究多层涂层刀具失效机理的有效方法,  相似文献   

17.
Prediction of residual stress distribution after turning in turbine disks   总被引:3,自引:0,他引:3  
The state of a surface region after machining is definitely affected by cutting parameters, such as cutting speed, feed rate, tool nose radius, tool rake angle and the presence of a cutting fluid, which plays a major role in determining friction at the tool–chip interface. The aim of the present study is to develop a finite element model based on the general-purpose nonlinear finite element code MSC.Marc by MSC.Software Corporation. This software is capable of simulating the cutting process of low-pressure turbine disks of aircraft jet engines from its very beginning to steady-state conditions. Basically, the present analysis is a coupled thermo-mechanical dynamic-transient problem, based on the update Lagrangian formulation; no pre-defined path is given for the separation of the chip from the workpiece, since material deformation occurs as a continuous indentation performed by the rigid tool. In addition to the cutting parameters, the main inputs in this analysis are material constitutive data, the friction coefficient at the toolchip interface and the cutting tool temperature. All the relevant variables, like stresses, strains, temperatures, chip shape and residual stresses, are predicted in a wide range of cutting conditions. The results from the model are compared to some basic theories of metal cutting and to an experimental study, concerning orthogonal cutting of steel AISI 316L. Concerning the specific case of turning process of nickel alloy Inconel 718 low-pressure turbine disks, the calculated residual stress are compared to experimental measurements from real machined disks.  相似文献   

18.
The material removal process in wire electrical discharge machining (WEDM) may result in work-piece surface damage due to the material thermal properties and the cutting parameters such as varying on-time pulses, open circuit voltage, machine cutting speed, and dielectric fluid pressure. A finite element method (FEM) program was developed to model temperature distribution in the workpiece under the conditions of different cutting parameters. The thermal parameters of low carbon steel (AISI4340) were selected to conduct this simulation. The thickness of the temperature affected layers for different cutting parameters was computed based on a critical temperature value. Through minimizing the thickness of the temperature affected layers and satisfying a certain cutting speed, a set of the cutting process parameters were determined for workpiece manufacture. On the other hand, the experimental investigation of the effects of cutting parameters on the thickness of the AISI4340 workpiece surface layers in WEDM was used to validate the simulation results. This study is helpful for developing advanced control strategies to enhance the complex contouring capabilities and machining rate while avoiding harmful surface damage.  相似文献   

19.
基于三维多相有限元的CFRP细观切削机理研究   总被引:7,自引:0,他引:7  
为深入揭示碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic/polymer,CFRP)切削机理,针对目前宏观单相有限元方法无法直观体现纤维和基体的失效形式、切屑类型等问题,借助数值仿真方法建立了CFRP直角切削的三维多相有限元模型。测量刀具刀尖形貌,根据刀具和CFRP设计数据提取CFRP纤维、基体细观几何信息,建立直角切削细观几何模型;基于定义材料本构用户子程序(User subroutine to define material behavior,VUMAT)分别定义纤维和基体的材料本构(弹塑性、失效准则、损伤演化方式),对不同纤维方向角的三维多相CFRP直角切削模型进行仿真分析;设计直角切削试验对仿真结果进行对比验证。仿真结果直观地展示了基体和纤维的失效形式、切屑形成过程、不同情况下切削亚表面损伤深度,通过各种情况下切削力数据的分析,揭示了切削力随纤维方向角的变化规律,并通过试验验证了该有限元建模仿真方法的有效性。  相似文献   

20.
High-speed machining (HSM) may produce parts at high production rates with substantially higher fatigue strengths and increased subsurface micro-hardness and plastic deformation, mostly due to the ploughing of the round cutting tool edge associated with induced stresses, and can have far more superior surface properties than surfaces generated by grinding and polishing. Cutting edge roundness may induce stress and temperature fields on the machined subsurface and influence the finished surface properties, as well as tool life. In this paper, a finite element method (FEM) modeling approach with arbitrary Lagrangian Eulerian (ALE) fully coupled thermal-stress analysis is employed. In order to realistically simulate HSM using edge design tools, an FEM model for orthogonal cutting is designed, and solution techniques such as adaptive meshing and explicit dynamics are performed. A detailed friction modeling at the tool–chip and tool–work interfaces is also carried out. Work material flow around the round edge cutting tool is successfully simulated without implementing a chip separation criterion and without the use of a remeshing scheme. The FEM modeling of the stresses and the resultant surface properties induced by round edge cutting tools is performed for the HSM of AISI 4340 steel. Once FEM simulations are complete for different edge radii and depths of cut, the tool is unloaded and the stresses are relieved. Predicted stress fields are compared with experimentally measured residual stresses obtained from the literature. The results indicate that the round edge design tools influence the stress and temperature fields greatly. An optimization scheme can be developed to identify the most desirable edge design by using the finite element analysis (FEA) scheme presented in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号